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Conjugate gradient-boundary element solution to the Cauchy
problem for Helmholtz-type equations

L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, X. Wen

Abstract In this paper, an iterative algorithm based on the
conjugate gradient method (CGM) in combination with
the boundary element method (BEM) for obtaining stable
approximate solutions to the Cauchy problem for Helm-
holtz-type equations is analysed. An efficient regularising
stopping criterion for CGM proposed by Nemirovskii [25]
is employed. The numerical results obtained confirm that
the CGM + BEM produces a convergent and stable
numerical solution with respect to increasing the number
of boundary elements and decreasing the amount of noise
added into the input data.

Keywords Inverse problem, Cauchy problem,
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1

Introduction

The Helmholtz equation arises naturally in many physical
applications related to wave propagation and vibration
phenomena. It is often used to describe the vibration of a
structure [1], the acoustic cavity problem [2], the radiation
wave [3] and the scattering of a wave [4]. Another im-
portant application of the Helmholtz equation is the
problem of heat conduction in fins, see e.g. Kern and
Kraus [5] and Manzoor et al. [6].

The knowledge of the Dirichlet, Neumann or mixed
boundary conditions on the entire boundary of the solu-
tion domain gives rise to direct problems for the Helm-
holtz equation which have been extensively studied in the
literature. For example, Niwa et al. [8] have studied the
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solution to the Helmholtz equation using the complex
valued boundary element method (BEM). De Mey [9] has
proposed a simplified formulation which used the real part
of the complex valued fundamental solution to construct
the real part BEM for the Helmholtz equation. Hutchinson
[10] has used the real part BEM in order to solve the
vibration problems of a membrane. Later, other real-val-
ued formulations have been developed, e.g. the multiple
reciprocity method (MRBEM) [11, 12, 13] and the dual
reciprocity method (DRBEM) [14, 15, 16].

The well-posedness of the direct problems of the
Helmholtz equation via the removal of the eigenvalues of
the Laplacian operator is well established, see e.g. Chen
and Zhou [17]. Unfortunately, many engineering problems
do not belong to this category. In particular, the boundary
conditions are often incomplete, either in the form of
underspecified and overspecified boundary conditions on
different parts of the boundary or the solution is pre-
scribed at some internal points in the domain. These are
inverse problems, and it is well known that they are gen-
erally ill-posed, i.e. the existence, uniqueness and stability
of their solutions are not always guaranteed.

There are important studies of the Cauchy problem for
the Helmholtz equation in the literature. Unlike in direct
problems, the uniqueness of the Cauchy problem is
guaranteed without the necessity of removing the eigen-
values for the Laplacian. However, the Cauchy problem
suffers from the non-existence of the solution and con-
tinuous dependence on the input data. A BEM-based
acoustic holography technique using the singular value
decomposition (SVD) for the reconstruction of sound
fields generated by irregularly shaped sources has been
developed by Bai [18]. The vibrational velocity, sound
pressure and acoustic power on the vibrating boundary
comprising an enclosed space have been reconstructed by
Kim and Th [19] who have used the SVD in order to obtain
the inverse solution in the least-squares sense and to
express the acoustic modal expansion between the
measurement and source field. Wang and Wu [20] have
developed a method employing the spherical wave
expansion theory and a least-squares minimisation to
reconstruct the acoustic pressure field from a vibrating
object and their method has been extended to the recon-
struction of acoustic pressure fields inside the cavity of a
vibrating object by Wu and Yu [21]. Recently, DeLillo
et al. [22] have detected the source of acoustical noise
inside the cabin of a midsize aircraft from measurements
of the acoustical pressure field inside the cabin by solving
a linear Fredholm integral equation of the first kind.

367




368

In this paper, we apply a variational method for solving
the Cauchy problem for Helmholtz-type equations in a
two-dimensional geometry by considering the solution on
the underspecified boundary as a control in a direct mixed
well-posed problem while trying to fit the Cauchy data on
the overspecified boundary. In doing so, we attempt to
minimise a functional relating the discrepancies between
the known and calculated values of the data on the over-
specified boundary following a technique similar to that
used by Hao and Lesnic [23] and Marin et al. [24] for the
Cauchy problem for the Laplace equation and the Lamé
system, respectively. We prove that this functional is twice
Fréchet differentiable and a formula for the gradient of the
functional is obtained via some appropiate adjoint prob-
lems. Since the minimisation problem contains almost all
the properties of the Cauchy problem it still remains ill-
posed. The conjugate gradient method (CGM), with a
stopping rule proposed by Nemirovskii [25], is therefore
employed. This method is known to have an optimal order
convergence rate, see Nemirovskii [25]. The numerical
implementation of the CGM is based on the BEM.

2

Mathematical formulation

Consider an open bounded domain Q C RY, where d is the
dimension of the space in which the problem is posed,
usually d € {1,2,3}, and assume that Q is bounded by a
surface I' = 0Q € %"'. We also assume that the boundary
consists of two parts, I' = I'; UT,, where T'}, T, # ) and
Fl n Fz - Q)

Referring to heat transfer for the sake of the physical
explanation, we assume that the temperature field T(x)
satisfies the Helmholtz-type equation in the domain Q,
namely

LT(x) = (A+ #H)T(x) =0, x€Q, (1)

where%:oc—l—iﬁGC,i:\/—_l,oc:0andﬁ€R.For
example, Eq. (1) models the heat conduction in a fin, see
e.g. Kern and Kraus [5], Manzoor et al. [6] and Lin and
Jang [7] where T is the dimensionless local fin tempera-
ture, f* = h/ (kt) h is the surface heat transfer coefficient
[W/(m? K)], k is the thermal conductivity of the fin
[W/(m K)] and ¢ is the half-fin thickness [m]. The varia-
tional method described in the next section is also valid in
the case when . is real, i.e. « € R and f§ = 0.

Let n(x) be the outward unit normal vector at I" and
&I (x) = (VT - n)(x) be the flux at a point x € I. In the
direct problem formulation, the knowledge of the tem-
perature and/or flux on the whole boundary I" gives the
corresponding Dirichlet, Neumann, or mixed boundary
conditions which enables us to determine the temperature
distribution in the domain Q. If it is possible to measure
both the temperature and the flux on a part of the
boundary I, say I';, then this leads to the mathematical
formulation of an inverse problem consisting of equation
(1) and the boundary conditions
oT
- (x) =

where T and @ are prescribed functions. In the above
formulation of the boundary conditions (2), it can be seen

T(E) = T(E)a &)(E), X € I y (2)

that the boundary I'; is overspecified by prescribing both
the temperature T|p, and the flux 0T /0n|. , whilst the
boundary I'; is underspecified since both the temperature
T|;-, and the flux 8T /0n|p, are unknown and have to be
determined. It should be noted that the problem studied in
this paper is of practical importance. For example, the
Cauchy problem (1) and (2), where #" € C\R, represents
the mathematical model for the heat conduction in plate
finned-tube heat exchangers, see [5, 6, 7], for which the
temperature and the flux can be measured at some points
on the fin, whilst both the temperature and the flux are
unknown at the fin base or, equivalently, in the tubes.

This problem, termed the Cauchy problem, is much
more difficult to solve both analytically and numerically
than the direct problem, since the solution does not satisfy
the general conditions of well-posedness. In addition, it
should be stressed that the Dirichlet, Neumann or mixed
direct problems associated to equation (1) do not always
have a unique solution due to the eigensolutions, see Chen
and Zhou [17]. However, the Cauchy problem given by
equations (1) and (2) has a unique solution based on the
analytical continuation property. Although this problem
has a unique solution, it is well known that this solution is
unstable with respect to small perturbations in the data on
I';, see e.g. Hadamard [26]. Thus the problem under in-
vestigation is ill-posed and we cannot use a direct ap-
proach, such as the Gauss elimination method, in order to
solve the system of linear equations which arises from the
discretisation of the partial differential equations (1) and
the boundary conditions (2). Therefore, knowing the exact
data T and @ on the boundary I',, we apply a variational
method to the aforementioned Cauchy problem.

3

Variational method

The Cauchy problem under investigation is given by

Egs. (1) and (2), where T € L}(T,), ® € Lz(l"z) and T is
sought in H'/2(Q). We note that ® € H!(T'}) is sufficient
for this variational method. Let us denote by 7;f the trace
of a function f determined in Q over I'j, j = 1, 2. First we
solve the direct problem

LT(x) =0, xeQ
VIT(x) =v(x), «xel (3)
VZa ():q)(z)v &61—‘2

with v € H'/2(I';). If we denote by T = T(v, ®) the solu-
tion to the problem (3) and define the linear operator

A:HYY)—ILX(T,), v—Av=pT(n,®) , (4)
then we aim to find v € H'/3(I"}) such that
Av="7,T(v,®) =T . (5)
To do so, we attempt to minimise the functional

J: H/2(I'))—[0, 00),

v—](v) = %||Av —T

Tl 2ry)
= 30T, ®) = Tl (6)
with respect to v € H'/2(T,), i.e.



Find v* € H/?(I';) such that J(v*) = min J(v) .

veH!/2(T))
(7)

We note that since v € H'/2(T';), ® € L*(T';) and T € %"
there is a unique solution T(v,®) € H'/2(Q) of the direct
problem (3), see e.g. Lions and Magenes [27]. Thus
Av =,T(v,®) € L*(I';) and hence expression (5) is
meaningful.

In what follows we need the following result on Green’s
formula:

Consider now the problem

LY¥(x) =0, x€Q
11¥(x) =0, xel (8)
7o (x) =q(x), xeT;

with qc LZ(FZ)

Lemma 1 Let T and ¥ be the solutions of the problems
(3) and (8), respectively. Then

[ 05 @v@dr + [ gl Teodre)

= [ Bl ¥dre) . ©)

Proof: We note that since g € L*(T;), then ¥ € H*/?(Q)
and hence, ,0¥/0n € L*(T';). It follows that relation (9) is
meaningful in the classical sense. This can be proved in the
framework of distribution theory, see e.g. Lions and
Magenes [27], but an alternative proof is given here.

Let v € H!(T';) be a sequence such that v(" —v in
H'2(T';). We denote by T™ = T(v™, ®) the solution of
the problem (3) with v = v It can be proved, see e.g.
Lions and Magenes [27], that T € H*?(Q) and T®™ —T
in H'/2(Q). It follows that 7, T™ —y, T in L?(T';). Since
¥ ¢ H>?(Q), we have

_ (n) x X X
0= /Q LT® (x) ¥ (x)dO(x)

oT(™)
r 671

- (aT(n) (055 ()~ AT ¥ )

ij x]'

(x)¥(x)dI(x)

(n)
- [ o e warw
Iy

(n)
+ [ 1 ¥ ar (e

_ aT(n>x@_‘Px_/2(n)x . .
/Q( 0x; (x) Ox; () — AT (—)T(_))dQ(_) )
(10)

If we now substitute the boundary conditions from both
problems (3) and (8) into the surface integrals in (10), we
obtain

oT™ a—lI! ) T )
/Q< o, B BT (_)‘P(_)>d9(_)

= [ o ¥idre) . (11)

In a similar manner, since T™ € H*/2(Q), we have

_ x (n) x X
0— /Q L¥(x) T™ (x)dQ(x)
row
- [ %

(n)
_ /Q <66ij (&)2—;(&)—;gfzﬂn)(&)llf(&))dg(&)

(%) T™ (x)dI'(x)

- / i %_T ()7, T™ (x)dI(x)
r n
" /r V2 % (2)7, T (x)dI(x)

- (aT(m 95, @) - T Jdal)

6x]- an
(12)

If we now substitute the boundary conditions from both
problems (3) and (8) into the surface integrals in (12), we
obtain

/Q <6T(n> (x) oF (x) — #*T™ @xp(&)) dQ(x)

ax]‘ axj

= [ G @

n / 47, T™ ()T (x) .

From relations (11) and (13), we obtain

[ 7% @ dr + [ g1 @dre

(13)

I,
— [ @i . (14
Letting n— o0 in (14) we establish relation (9) and hence
Lemma 1 is proved. ]

Now we are in a position to consider the variational
problem. The first result concerning the approximate
controllability is as follows:

Theorem 1 The set {y,T(v, D)|v € HY(I'y)} is dense in
L*(TI';), i.e. the Cauchy problem (1) and (2) is solvable in
H'Y2(Q) for almost all T,® € L*(T,).

Proof: Let n € L*(T';) be such that
[ T @) @ndar@ =0, we AT .
I

(15)
Let (0, #) be the solution of the problem (8) with g = #.
Then we have y,¥ € L?(I';). From Green’s formula (9) and
expression (15) we obtain
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| S8 umar (o

- /r B(x)7,¥(0, ) (x)dT(x), v € HY(T) |

(16)
Replacing v with —v in (16), we obtain

- [ 3 E 8 (@
I

- /r B(x)7,¥(0, ) (x)dT(x), v € HYA(T)) |

(17)
Equations (16) and (17) imply that

[ S0 viaar(@) o
I,

and hence we have
0¥(0,7)
Y1 on
Thus, the function ¥(0,%) € H>/?(Q) satisfies the problem
given by (1) and the boundary conditions y,'¥(0,7)(x) =
9,0¥(0,7)/0n(x) = 0, x € I';. From a uniqueness theorem
for the Cauchy problem of the Helmholtz equation, it
follows that W(0,#) = 0 and therefore 7,'¥(0,7)(x) =
n(x) =0, x € I',. Thus the theorem is proved. O
Furthermore, we have the following result:

Vv € HI/Z(FI)

(x)=0, xeTI .

Corollary 1

inf J(v)=0.
veHI/2(Iy)

Theorem 2 The functional J(v) is twice Fréchet differen-
tiable and is strictly convex. Moreover, its first gradient has
the form

1 o¥
"1 an

J(v) = (18)

Proof: Let 1 be a function in H'/>(T;) and denote by
(s )2(r,) the scalar product in the space L?(T';). Then
using refations (5) and (6) we have

1 ~
J+0) =) =S4V +n) = Tl
1 ~
—5llav - T3y
1 ~ -2
=5 [22T(v +1,9) = T|[2r,)

1 = )
3 [7T(v, @) — T”LZ(FZ) : (19)
The linearity of the boundary value problems for the
Helmholtz equation implies the validity of the superposi-
tion principle, so that we have T(v 4+, ®) = T(v, D)+
T(#,0), where we have denoted by T(5,0) the solution to
the following direct problem

LT(n,0)(x) =0, xeQ

1T, 0)(x) =n(x), xel (20)

Vz%(&)zoa xel,
Thus (19) can be written in the following form:
J@+n) =J() = (nT(v,®) = T.7,T(1,0)) 1 r

2 1T Ol - (1)

Let us consider now the adjoint problem, namely

L¥(x) =0, xeQ

1P (x) =0, xel (22)

&%) =nTE,®)(x) - T(x), xe€T,

Applying Green’s formula (9) to the problems (20) and
(22), we obtain

— /r o 2—‘: (x)n(x)dI(x)

= [ (510,00 - 7 )70, 0 @ar )
and, consequently, from (21) we have

e =10 == [ 3 @neare)

1
+ 2 17T 01, 0)llzaqr, - (23)

Since T(n,0) is the solution in H'/?(Q) to the problem
(20), then there exists a constant ¢ > 0 such that

ITCn, ) lrpr20) < ellnllgmrryy -
It follows immediately that
||V2T(’7,0)||i2(r2)—’0 as ||nl[gr,)—0

which means that the functional J(v) is Fréchet differen-
tiable and its first gradient is given by (18).
Consider now the problem

Lo(x) =0, x€Q
ne(x) =0, xeTl (24)
152 (x) =7 T(n,0)(x), x€T, ,

which has a unique solution in H*/?(Q) since y,T(,0) €
L*(T';). If we apply Green’s formula (9) to the problems
(20) and (24), we obtain

/r 12 T(1,0)(x)7,T(1,0) ()T (x)

0p
—— [ n e nar( (25)
I, h
and it follows that the functional J(v) is twice Fréchet
differentiable and its second gradient is given by the for-
mula

0o
1 _ -
(v)-n= Ny,

~



In order to prove that the functional J(v) is strictly convex,
we first observe that J(v) is convex since

00 1)y = = [ 0 Ee AN

and, according to (25), we have

T'0) 1)y = [ baTn0)Parce)
= ||y, T(n, )”Lz(rz) >0 .
Further, if <] -1, ’7>L2 ) = =0, then 9,T(17,0)(x) =0
and it follows that T(n, OS satisfies the problem
LT(n,0)(x) =0, x€Q
72T, 0)(x) =0, xeT
VZW(E):()? x eI

From a theorem on the uniqueness of the Cauchy problem
of the Helmholtz equation, we have that T(1,0) = 0 in Q.
Hence 1 = 0 and the functional J(v) is strictly convex. []

Theorem 3 (i) If there exists a solution v* € H'/*(T'}) of
the variational problem (7), then it is unique. Furthermore,
]( *) = 0 and from this it follows that the Cauchy problem
given by equations (1)and(2) has a unique solution in
H'Y2(Q). (ii) If the Cauchy problem given by equations
(1)and(2) has a unzque solution in H'/?(Q), then there
exists a solution v* € H'/*(T'}) of the variational problem

(7).

Proof (i) If the variational problem (7) has a solution
s Hl/z(l"l) then, accordlng to Corollary 1, J(v*) = 0.
The uniqueness of v* follows from the strict convexity of

the functional J.
(i) This is obvious. O

4
Conjugate gradient method
As we can calculate the gradient of the functional J(v) via
the adjoint problem (22), we can now apply the CGM with
a stopping rule, as proposed by Nemirovskii [25]. First, we
note that due to the linearity of the boundary value
problems of Helmholtz-type equations, the superposition
principle can be applied and, therefore, T(v,®) =
T(v,0) + T(0, D).

We define the linear operator

A() N HI/Z(FI)—>L2(F2),

and thus we have the following linear equation, which is
equivalent to (5),

AOV = ’VZ(T(Va (i)) -

v—Agv = 7,T(v,0)

T(Ov (i))) = VZT(Vv {D) - VZT(0> (D)
=T—y,T0,®) =T .

Suppose that instead of T we have only an approximation
of it, say T, € L?(I';) such that

1T~ Tllpgry < - (26)

In order to solve the Cauchy problem given by (1) and (2)
with noisy data T, we need to compute Aj(Aov — T,),
where Aj is the adjoint of the operator A, and T, is given

by

Ts = TF - sz(V7 0) :

However, we observe that this is nothing else than the
gradient (18) of the functional (6). Thus the CGM applied
to our problem has the form of the following algorithm:
Step 1. Set k = 0 and choose v(®) € H'/2(T',).

Step 2. Solve the direct problem

LT®(x) =0, xeQ
T®(x) =vM(x), xeT,
agﬂ x) = O(x), xel,

to determine the residual

Step 3. Solve the adjoint problem

®(x) =0, xeQ
¥ (x) =0, xeT
Y (x) =rP(x), xel,

a\y(k)

to determlne the gradient g! | = |- Calculate

d® as follows:

k=0

" Ir,
|1"1 = _
gWI, + (18P ey /18 Vlinae,) Jd* D, k=1

Step 4. Solve the direct problem

Lo®(x) =0, x€Q
k(x)_ k(&)a Eerl
%% (x) =0, xeTl,

to determine A,d®) = ¥ r, and compute

Y|y Qm“wzman/p%dwn;wﬁ)w”hl-

Step 5. Set k = k + 1. Repeat steps 2—4 until a stopping
criterion is prescribed.

As a stopping criterion we choose the one suggested by
Nemirovskii [25], namely choose the first k € N such that

|70 2, < 0¢ (27)

where 6 > 1 is a constant which can be taken heuristically
to be 1.1, as suggested by Hanke and Hansen [28]. It fol-
lows from Nemirovskii’s result that the above iterative
procedure converges with an optimal convergence rate to
the exact solution of the problem as the noise level tends to
zero.
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We note that in step 2 we have the following relations

rW”:M“W—i:<MﬂWHWJ&®O—t

—AO{T +(ug P /1 Aod k>||iz<r2>)d<k>}

+ 7 T(07 é) -

- (|g<’<>||ip/z<rl>/||Aod<">||iz<m) (Apd™®)
+ <A0T(k) + sz(0,&>)> -

- (|g<k>||%p/z<rl>/||Aod(k>||iz<r2>) (Agd®)

+(ATW — T,)
:(\g aqry/1Aod k>uiz<rz>)<Aod<k>>+r<k>.
Thus we obtain

rW“=%“+Qémmmmmm¢”@mgmm®xkzo

and we note that we have in fact to solve only the two
direct problems in steps 3 and 4 at every iteration, except
for that to determine r(®)

5

Boundary element method

The Helmholtz-type equation (1) can also be formulated in
integral form, see e.g. Chen and Zhou [17], as

OE(x,
T+ f ai(y? T(y)dr(y)

~ [ By, 0)rw)

for x € Q = QUT, where the first integral is taken in the
sense of the Cauchy principal value, c(x) =1 for x € Q
and c(x) = 1/2 for x € T (smooth), and E is the funda-
mental solution for the Helmholtz-type equation (1),
which in two-dimensions is given by

~Hy' (Jf r(&z)) :

Here r(x, y) represents the distance between the load point
x and the field point y and H; ('is the Hankel function of
order zero of the first kind. It should be noted that in
practice the boundary integral equation (28) can rarely be
solved analytically and thus a numerical approximation is
required.

A BEM with constant boundary elements is used in
order to solve the intermediate mixed well-posed bound-
ary value problems resulting from the CGM adopted,
which is described in Section 4. Consequently, the
boundary I' is approximated by N straight line segments

(28)

E(x,y) = (29)

in a counterclockwise sense along with the temperature
and the flux which are considered to be constant and take
their values at the midpoint, i.e. the collocation point, also
known as the node, of each element. More specifically, we
have

N
~| |, T,.=p"1y1, n=1,...,N
nL:J Yy (50)

ZN:ZO’ g":(y_”_l—i—z”)/z n=1,...,N

and

T(y) = T(x"),

%: y) = aT(") yET, n=1,..N . Gy

By applying the boundary integral equation (28) at each
collocation point x™, m = 1,..., N, and taking into ac-
count the fact that the boundary is always smooth at these
points, we arrive at the following system of linear algebraic
equations

AT = BD (32)

where A and B are matrices which depend solely on the
geometry of the boundary I' and the vectors T and @
consist of the discretised values of the temperature and the
flux on the boundary I', namely

Tim) = T, ®(m) =2 (=) (33)
for m=1,... N, and
OE(x™,y)
A(n,m) = Oum/2 + dI’(y),
/. o »

B(n,m):/F E(x™,y)dI'(y)

for x € I and m, n=1,...,N, where d,, is the Kro-
necker tensor. We note that the sense of the Cauchy
principal value assigned to the first integral in the
boundary integral equation (28) has meaning only when
x™ € I'y, as in the other cases the integral is non-singular.
If the boundaries I'; and I', are discretised into N; and
N, boundary elements, respectively, such that
N; + N, = N, then Eq. (32) represents a system of N linear
algebraic equations with 2N unknowns. The discretisation
of the boundary conditions (2) provides the values of 2N,
of the unknowns and the problem reduces to solving a
system of N equations with 2N; unknowns which can be
generically written as

CX=F (35)

where F is computed using the boundary conditions (2),
the matrix C depends solely on the geometry of the
boundary I' and the vector X contains the unknown values
of the temperature and the flux on the boundary I';.

6

Numerical results and discussion

In this section, we illustrate the numerical results obtained
using the CGM proposed in Sect. 4 and the BEM described



in Sect. 5. In addition, we investigate the convergence with
respect to the mesh size discretisation and the number of
iterations when the data is exact and the stability when the
data is perturbed by noise.

6.1
Examples
In order to present the performance of the numerical
method proposed, we solve the Cauchy problem (1) and
(2) in a smooth two-dimensional geometry, namely the
annulus Q = {x = (x1,%)|R? < x} + x5 <R2}, R; = 0.5
and R, = 1.0. We assume that the boundary I" of the do-
main Q is divided into two disjointed parts, namely
I ={xelx}+x; =R} and
I, = {x € ['|x] + x5 = R2}, and the outer boundary I'; is
overspecified by the prescription of both the temperature
and the flux while the inner boundary I'; is underspecified
with both the temperature and the flux unknown.

We consider the following analytical solutions for the
temperature in the domain Q:

Example 1. (L=A— %, f€R)

T (x) = exp(a1x) + a%2), x= (x1,%)€Q ,

(36)
where 4 = o+ i, « =0, f = 2.0, a; = 1.0 and
a, =/ B* — a3, which corresponds to a flux on the
boundary I" given by
6T(an)
5 — () = (am (x) + am () T (x), -
x=(x1,%) el ,
and
Example 2. (L=A+o?, o € R)
TOY (x) = cos(arx; + arxz), %= (x1,%) €Q,
(38)
where A = o+ iff, « = 2.0, f =0, a; = 1.0 and
a, = /o — a%, which corresponds to a flux on the
boundary I' given by
aT(an) )
an (x) = —(am(x) + axny(x)) sin(arx; + axx,),
x=(x1,%) €l .
(39)

The Cauchy problems given by Egs. (1) and (2) for the
aforementioned examples have been solved using the
CGM + BEM with constant boundary elements to provide
the unspecified boundary temperature. The number of
boundary elements used for discretising the boundary I
was taken to be N € {40, 80,160} with N; = N, = N/2.
Although not presented here, it should be mentioned that
the boundary flux OT™™ /0| r, can be computed after
obtaining the boundary temperature (™™ |r, by solving
either a Dirichlet problem, i.e. Eq. (1) with the boundary
conditions T| = T(num)\rl and T|p, = T|p,, or a mixed

boundary value problem, i.e. Eq. (1) with the boundary
conditions T|p, = T(num)\rl and 0T /0n|p, = ®|.

6.2

Direct approach

A good a priori insight into the ill-conditioning of the
system of linear equations (35) is given by the condition
number of the sensitivity matrix C, namely

condC = det(C"C) . (40)

For the test examples considered, the condition numbers
of the sensitivity matrix C were calculated using the NAG
subroutine FO3AAF which computes the determinant of a
matrix using Crout factorisation with partial pivoting. The
condition number (40) for N = 20 boundary elements
corresponding to both examples 1 and 2 is O(1072!).
When the number of boundary elements exceeds N = 20
then the condition numbers are even smaller and the value
of the determinant (40) is too small to be stored in the
computer. Therefore, a direct approach to the problem
produces a highly unstable solution and this is a reason
why other methods, such as the method presented here,
have to be employed.

An arbitrary function v(%) € H'/2(T';) may be specified
as an initial guess for the temperature on I';. For the ex-
amples considered, this initial guess has been chosen as

vO(x) =0, (41)

and this choice ensures that the initial guess is not too
close to the exact values T(*"),

&El—‘l )

6.3

Convergence of the algorithm

In order to investigate the convergence of the proposed
CGM + BEM algorithm, at every iteration we evaluate the
accuracy errors defined by

er = HT<k> - T(an>HH1/2(r1),

(42)
Er = AT — T,

where T(Y) is the temperature on the boundary I'; re-
trieved after k iterations, the linear operator A is given by
Eq. (4) and each iteration consists of solving three direct,
mixed, well-posed problems as described in Sect. 4.

Figure 1(a) and (b) show the accuracy errors er and Er,
respectively, as functions of the number of iterations, k,
obtained for the Cauchy problem given by example 1 for
N € {40, 80,160} boundary elements when using “exact
boundary data” for the inverse problem, i.e. boundary
data obtained by solving a direct well-posed problem,
namely

LT(x) =0, x€Q

(an)
Tx) =% (x), xel (43)
T(x) =T (x), xel

From these figures it can be seen that both errors er and
Er keep decreasing, even after a large number of iterations,
e.g. k = 1000. Furthermore, for example 1, N > 40 ensures
a sufficient discretisation for the accuracy to be achieved.
It should also be noted that the pattern of the convergence
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1 2 4 7 10 20 40

Number of iterations k

Fig. 1. The errors (a) er = ||T®) — T(a“)||H1/z(1-l), and (b)

Er = ||AT® — Tn) ll2(r,) as functions of the number of itera-
tions, k, obtained with N): 40(---), N =280 (- -), and N = 160
(—) constant boundary elements, for the Cauchy problem con-
sidered in example 1

process, with sharp decreases followed by flat portions is
common to conjugate gradient methods, see e.g. Hao and
Lesnic [23] and Marin et al. [24]. Similar results have been
obtained for the Cauchy problem given by example 2 and
therefore they are not presented herein.

The numerical solutions for the temperature T/
obtained after k = 1000 iterations for the Cauchy prob-
lems given by examples 1 and 2 are presented in Figure
2(a) and (b), respectively. From these figures, it can be
seen that the accuracy in predicting the temperature
distribution on the boundary I'; is very good for both
examples considered. Although not illustrated here, an
important conclusion is reported, namely that the nu-
merical solution for the temperature T|j. is more accurate
for the Cauchy problem in an annulus, i.e. examples 1 and
2, than for the Cauchy problem in a disk, see e.g. Hao and
Lesnic [23] and Marin et al. [24]. The reason for this is
that I'; N T, = () in the case of examples 1 and 2, whilst
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analytical
* N=160
= N=80

v N=40

2.5

2.0

154

1.0

0.5+
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[
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0.6 e N=160

= N=80

v N=40
0.5 | | | | |

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

e/r2m

Fig. 2. The analytical solution T@) (—) and the numerical so-
lution obtained with N = 40 (V¥), N = 80 (M), and N = 160(®)
constant boundary elements, on the underspecified boundary I';,
for the Cauchy problem considered in (a) example 1, and (b)
example 2

T, N T, # ) in the case of a disk, i.e. there exist two points
where the constant BEM changes to mixed boundary
conditions. It is well known, see e.g. Fichera [29] and
Schiavone [30], that the gradient of the temperature T
possesses singularities at the points where the data
changes from temperature boundary conditions to flux
boundary conditions, even if the temperature and the flux
data are of class . Consequently, the classical solution
for the temperature T cannot be smooth, although its
smoothness can be improved if the temperature and the
flux data are required to satisfy an increasing number
(increasing with smoothness) of additional conditions, see
also Wendland et al. [31]. Nevertheless, in the numerical
implementation one may use linear boundary elements to
enforce a smooth temperature across the junctions I'; N T,
or, even better, weighted functions at each iteration of the
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Fig. 3. The errors a er = ||[T® — 7@, r,» and b

Er = ||AT® — Tan) ll2(r,) as functions of the number of itera-
tions, k, obtained with N) = 40 constant boundary elements and
several amounts of noise, namely p = 0% (—), p = 1% (- -) and
p = 2% (---) added into the input data Ty, for the Cauchy
problem considered in example 2

algorithm in order to cancel the singularity, but this will be
investigated in a future work.

For the Cauchy problem investigated in this paper, it
was found that the proposed CGM + BEM algorithm pro-
duces an accurate and convergent numerical solution for
the missing boundary temperature with respect to in-
creasing the number of iterations, k, and the number of
boundary elements, N, provided that exact input data is
used. However, exact data is seldom available in practice
since measurement errors always include noise in the
prescribed boundary conditions and this is investigated
next.

6.4

Stability of the algorithm

Once the convergence with respect to increasing k of the
numerical solution to the exact solution has been estab-

lished, we fix N = 40 and investigate the stability of the
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Fig. 4. The analytical solution T (—) and the numerical
solution obtained with N = 40 constant boundary elements and
several amounts of noise p = 0% (®), p = 1% (W), and p = 2%
(V) added into the input data T| , for the Cauchy problem
considered in a example 1, and b example 2

numerical method proposed by perturbing the input
boundary temperature data T|. as T|, = T|p, + 6T,
where 0T is a Gaussian random variable with mean zero
and standard deviation o = (p/100) max |T|, generated by

the NAG subroutine GO5DDF, and p is the percentage of
additive noise included in the input data T|, in order to
simulate the inherent measurement errors.

Figure 3(a) and (b) illustrate the accuracy errors ey and
Er, respectively, for various levels of Gaussian noise
p €{0,1,2}% added into the temperature data T|,
corresponding to the Cauchy problem given by example 2.
From these figures it can be seen that as p decreases then
both er and Er decrease. However, the error er in pre-
dicting the temperature on the underspecified boundary
I'; and the error Er in the residual temperature on the
overspecified boundary I', decrease up to a certain
iteration number after which they start increasing. If the
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Table 1. Optimal iteration numbers and errors for N = 40
boundary elements and various amounts p € {0,1,2} of noise
added into the input data T|- , for the Cauchy problems
considered in examples 1 and 2

Problem p 0% 1% 2%
Example 1 ¢ 0.00 1.99 x 107! 3.98 x 107!
kN o 3 3
er(ky) 1.00x 107 1.04 x 107! 2.16 x 107!
Er(ky) 225x107% 142x 107! 2.83x 107!

Example 2 & 0.00 3.01 x 1072 6.02 x 1072
kN e} 3 2
er(ky) 1.14x107° 7.01 x107% 1.38 x 1072
Er(ky) 5.61 x 107% 1.96 x 1072 4.66 x 1072

iterative process is continued beyond this point then the
numerical solution loses its smoothness and becomes
highly oscillatory and unbounded, i.e. unstable. Therefore,
a regularising stopping criterion, such as Nemirovskii’s
stopping criterion (27), must be used in order to terminate
the iterative process at the point where the error in the
numerical solution starts increasing.

In Figures 4(a) and (b) we present the numerical results
obtained for the temperature T on the boundary I'; for
various levels of noise added into the temperature data on
the boundary I',, namely p € {0,1,2}, corresponding to
the Cauchy problems given by examples 1 and 2, respec-
tively. From these figures, it can be seen that the numerical
solution is a stable approximation to the exact solution,
free of unbounded and high oscillations. The same con-
clusion can be drawn from Table 1 which presents the
errors er and Er obtained for the Cauchy problems given
by examples 1 and 2 for various levels of noise added into
the temperature data on I',, as well as the values of ¢ and
the optimal iteration numbers, ky, according to the stop-
ping criterion (27), as suggested by Nemirovskii.

From the numerical results presented in this section, it
can be concluded that Nemirovskii’s stopping criterion
(27) has a regularising effect and the numerical results
obtained by the CGM + BEM algorithm described in Sec-
tion 4 are convergent and stable with respect to refining
the the mesh size discretisation and decreasing the amount
of noise added into the input data, respectively.

7
Conclusions
In this paper, we have formulated the Cauchy problem for
Helmbholtz-type equations in a variational form where only
weak requirements for the Cauchy data are required.
Consequently, the solution of the direct problems, as well
as the associated adjoint problems, are defined in a weak
sense and a mathematical analysis has been undertaken.
The variational approach for solving the Cauchy problem
of Helmholtz-type equations needs the gradient of the
minimisation functional, which is provided by the solution
of the adjoint problem.

Due to the explicit representation of the gradient, the
CGM was employed to solve numerically the Cauchy
problem. The algorithm proposed consists of solving three

direct, mixed, well-posed problems for Helmholtz-type
equations at every iteration but because of the linearity of
the problem only two direct solutions are required at
every iteration. In combination with Nemirovskii’s stop-
ping criterion, the CGM is known to be of optimal order
when the data is sufficiently smooth. The numerical im-
plementation of the CGM is accomplished by using the
BEM, which requires the discretisation of the boundary
only. Cauchy problems are inverse boundary value prob-
lems and thus the BEM is a very suitable method for
solving such improperly posed problems. From the dis-
cussion of the results obtained for two benchmark ex-
amples, it can be concluded that the CGM with an
appropriate stopping rule together with the BEM produce
a convergent, stable and consistent numerical solution
with respect to increasing the number of boundary ele-
ments and decreasing the amount of noise added into the
input Cauchy data.

References
1. Beskos DE (1997) Boundary element method in dynamic
analysis: Part II (1986-1996). ASME Appl. Mech. Rev. 50:
149-197
2. Chen JT, Wong FC (1998) Dual formulation of multiple re-
ciprocity method for the acoustic mode of a cavity with a thin
partition. J. Sound Vibration 217: 75-95
3. Harari I, Barbone PE, Slavutin M, Shalom R (1998) Boundary
infinite elements for the Helmholtz equation in exterior do-
mains. Int. J. Numer. Meth. Eng. 41: 1105-1131
4. Hall WS, Mao XQ (1995) A boundary element investigation of
irregular frequencies in electromagnetic scattering. Eng. Anal.
Bound. Elem. 16: 245-252
5. Kern DQ, Kraus AD (1972) Extended Surface Heat Transfer.
McGraw-Hill, New York
6. Manzoor M, Ingham DB, Heggs PJ (1983) The one-dimen-
sional analysis of fin assembly heat transfer. ASME J. Heat
Transfer 105: 646-651
7. Lin CN, Jang JY (2002) A two-dimensional fin efficiency
analysis of combined heat and mass transfer in elliptic fins.
Int. J. Heat Mass Transfer 45: 3839-3847
8. Niwa Y, Kobayashi S, Kitahara M (1982) Determination of
eigenvalue by boundary element method. In: Banerjee PK,
Shaw R (eds) Development in Boundary Element Methods.
Chapter 7. Applied Science Publisher, New York
9. De Mey G (1977) A simplified integral equation method for
the calculation of the eigenvalues of Helmholtz equation. Int.
J. Numer. Meth. Eng. 11: 1340-1342
10. Hutchinson JR (1985) An alternative BEM formulation ap-
plied to membrane vibrations. In: Brebbia CA, Maier G (eds)
Boundary Elements VII. Springer Verlag, Berlin, pp. 613-625
11. Nowak AJ, Brebbia CA (1989) Solving Helmholtz equation by
boundary elements using multiple reciprocity method. In:
Calomagno GM, Brebbia CA (eds) Computer Experiment in
Fluid Flow. CMP/Springer Verlag, Berlin, pp. 265-270
12. Kamiya N, Andoh E (1993) Eigenvalue analysis by boundary
element method. J. Sound Vibration 160: 279-287
13. Kamiya N, Andoh E, Nogae K (1993) Eigenvalue analysis by
boundary element method: New developments. Eng. Anal.
Bound. Elem. 16: 203-207
14. Nardini CF, Brebbia CA (1983) A new approach to free vi-
bration analysis using boundary elements. In: Brebbia CA,
Futagami T, Tanaka M (eds) Boundary Elements V. Springer
Verlag, Berlin, pp. 719-730
15. Agnantiaris JP, Polyzer D, Beskos D (1998) Three-dimen-
sional structural vibration analysis by the dual reciprocity
BEM. Comput. Mech. 21: 372-381



16.

17.

18.

19.

20.

21.

22,

23.

Golberg MA, Chen CS, Bowman H, Power H (1998) Some
comments on the use of radial basis functions in the dual
reciprocity method. Comput. Mech. 22: 61-69

Chen G, Zhou J (1992) Boundary Element Methods. Aca-
demic Press, London

Bai MR (1992) Application of BEM-based acoustic hologra-
phy to radiation analysis of sound sources with arbitrarily
shaped geometries. J. Acoust. Soc. Am. 92: 533-549

Kim BK, Ih JG (1996) On the reconstruction of the vibro-
acoustic field over the surface enclosing an interior space
using the boundary element method. J. Acoust. Soc. Am. 100:
3003-3016

Wang Z, Wu SR (1997) Helmholtz equation-least-squares
method for reconstructing the acoustic pressure field.

J. Acoust. Soc. Am. 102: 2020-2032

Wu SR, Yu J (1998) Application of BEM-based acoustic ho-
lography to radiation analysis of sound sources with arbi-
trarily shaped geometries. J. Acoust. Soc. Am. 104: 2054-2060
DelLillo T, Isakov V, Valdivia N, Wang L (2001) The detection
of the source of acoustical noise in two dimensions. SIAM
J. Appl. Math. 61: 2104-2121

Hao DN, Lesnic D (2001) The Cauchy problem for Laplace’s
equation via the conjugate gradient method. IMA J. Appl.
Math. 65: 199-217

24.

26.

27.

28.

29.

30.

31.

Marin L, Hao DN, Lesnic D (2002) Conjugate gradient-
boundary element method for the Cauchy problem in elas-
ticity. Q. JI. Mech. Appl. Math. 55: 227-247

. Nemirovskii AS (1986) The regularizing properties of the

adjoint gradient method in ill-posed problems. Comput.
Maths. Math. Phys. 26: 7-16

Hadamard J (1923) Lectures on Cauchy Problem in Linear
Partial Differential Equations. Oxford University Press,
London

Lions JL, Magenes E (1972) Non-Homogeneous Boundary
Value Problems and Their Applications. Springer Verlag,
Berlin

Hanke M, Hansen PC (1993) Regularization methods for
large-scale problems. Surveys Math. Industry 3: 253-315
Fichera G (1952) Sul problema della derivata obliqua e sul
problema misto per Iequazione di Laplace. Boll. Un. Mat.
Ital. 7: 367-377

Schiavone P (1997) Mixed problem in the theory of elastic
plates with transverse shear deformation. Q. J. Mech. Appl.
Math. 50: 239-249

Wendland WL, Stephan E, Hsiao GC (1979) On the integral
equation method for the plane mixed boundary value prob-
lem for the Laplacian. Math. Meth. Appl. Sci. 1: 265-321

377




