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GAETANO FICHERA
Linear elliptic equations of higller order
in two inclepen&ent variables and singular
integral equations, with applications to

anisotropic inhomogeneous elasticity

The purpose of the present paper is to consider a strongly elliptic
linear differential equation of order 2m in two independent variables
and expound a method for obtaining solutions of the Dirichlet problem
for such an equation, which are continuous together with derivatives
of order m up to the boundary, under rather general conditions on the
boundary and the boundary data.

It is well known that in the last ten years much work has been de-
voted to elliptic equations of higher order by Garding [ 6], Visik [25],
F. John [10], Browder [ 2],[3], Nirenberg [17],[20], Agmon [1],
Hoérmander [ 8], Morrey [17], Miranda [15] and others.

Let us consider the very simple case of the Laplace equations in
order to review what methods of approach for this example can be ex-
tended to higher order.

We have the energy integral method that many authors have ex-
tended to the higher order case with different variants ( Garding,
Browder, Nirenberg, etc.). By this method it is proved that a unique
solution u of the following integral system

fgradu' gradvd-r+fvfd1-=0
A A

considered for any v of class Cm with support in A , exists in a
suitable class of functions. The function u is assumed to be a weak
solution of the Dirichlet problem, with homogeneous boundary condi-
tion, for the equation Azu =f

Under proper assumptions on the given function f , it is proved
that u is a classical solution of the problem.

Another classical method for the Laplace equation in two variables
consists in representing the solution as a potential of double layer
and solving the Dirichlet problem by the classical Fredholm integral
equation. :

This procedure was extended by Pleijel [ 22] to the biharmonic
equation and by Lopatinsky [13] to more general elliptic equations.
But it was Agmon [ 1] who three years ago succeeded in extending the
double layer theory to higher order elliptic equations, in two
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56 Singular Integral Equations

independent variables, with constant coefficients and no lower order
terms.

A third approach, in the case of Laplace equation in two indepen-
dent variables is by representing the solution as a single layer poten-
tial. If we impose Dirichlet boundary condition we obtain an integral
equation of the first kind, which does not lead to the information re-
quired to solve the problem. However suppose we seek a solution of
class C! in the closed domain, then by imposing the condition that
the tangential derivative on the boundary of the given function be
equal to the tangential derivative of the logarithmic potential, we get
a singular integral equation, which can be exhaustively treated and
whose solution gives the C! solution of the Dirichlet problem.

This last approach is the one extended in this paper to a general
higher order equation strongly elliptic in two independent variables
with variable coefficients and including lower order terms. For sim-
plicity I restrict myself to the case of a single equation with real co-
efficients. The method, however, applies equally well to general
strongly elliptic systems of equations (two independent variables)
with complex coefficients.

Moreover I could consider more general boundary conditions, for
example, mixed boundary conditions.

The method hinges on two points. Firstly the construction of a
proper fundamental solution in the large,of the type which in the 2nd
order case is called the principal fundamental solution.

Secondly to establish certain theoretical line-potential results and
to write down and discuss the singular integral system that results
from the boundary conditions.

§1. Differential equation. Statement of the problem. Parametrix.

We denote by p the ordered pair of nonnegative integers (p;, Pz)
and put p| =p;+p; . Let m be a positive integer and the a a
be real functions defined for any z = x + iy of the complex plane
and for 0 < Ipl <m, 0< lql <m . We shall suppose that

2m+\
apq € C for lpi + lql = 2m . This means that the apq have

continuous partial derivatives of order 2m satisfying a uniform
Holder condition in any compact set of the plane. We shall suppose

+
max(_|p|,|qj) A for |pl+|q|<2m . We denote

pl
by Dp the partial derivative ———— and consider the partial
axpl 8YP2

also that dpq ¢ C

differential operator
Eu = Dpa un
jelei

which we write in explicit form as follows
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= a - . .. . We assume E to be elliptic
Where ak. . Z_ (m—l, l)(m“ljj) p
i+j=k
a 2m-k k
positive for any z , that is Z ak( DN g > 0 for any non-

k=0
zero real vector (A, p)
Let A be a bounded domain of the z-plane bounded by a single
Jordan curve 3A , that we suppose to have a uniformly Hélder con-

32 . i
tinuous varying tangent (09A e Cl }\} .  We are concerned with the

following Dirichlet problem
D) to find a solution of the differential equation E(u) =f in A
P

satisfying the Dirichlet boundary condition Dpu =4

(0< |p| < m-1) continuous together with its derivative of order <m

in the closure A of A and possessing continuous derivatives up to

the order 2m in A
f and \.1Jp are given functions that must satisfy suitable hypotheses,
which we shall specify later.
4m 2m-k
We put L(w,z) = Z ak{z)w and denote by T a rectifiable
k=0
Jordan curve in the complex plane w , lying in the half plane
Im w < 0 and including all the zeros with negative imaginary part of
the polynomial L(w,z) . It is evident that when z varies in a com-
pact set we can choose as [' a curve independent of =z
The following function

Ref {(X—E)W+(y—n)]Zm-zlog[(X-é)er(y-n)]dw

2w?(2m-2)! 4T L{w,t)

Pz, &) =

is a parametrix in the sense of Hilbert and E. E. Levi for the operator
E . For log[(x-£)w+(y-n)] we take the principal branch

(-7 <arg[ (x-§)w+(y-n)] <m) . This, for x # £ , is holomorphic
in the w-plane cut along the straight half line Imw =0 , Rew < -
For x = £ the logarithm reduces to a constant. Here 2(x, 1) is

a one-valued function defined for z # { and analytic with respect to
the variables x,y in any region of the plane not including ¢ and of

2m+h , :
the class C as a function of ¢ in any region not including z .

All the derivatives of &#(z, () can be obtained by differentiating
under the integral sign. Since
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£
2m-2|p|-lql
=O{[(x-£)w+(y-n)]  log[(x-£)w +(y-n)])

P 0< Ipl+lgl < 2m-2
Dﬁmg[tx-g}ww-qn log[(x-¢ )w + (y-1)] - e

=O([(x-g)w +(y-m17") |pl+lql =2m-1

it follows, for z and ¢ in any compact set of the plane

- oflz-glZzleHal s ) oclplelal < 2m-2
D‘;’ngﬁ{z, ?;){

=o(lz-tl™Y [6] )| = 2

On the other hand, since E_ %z, () is expressed as a sum of terms
such as c

(h) 4 P Lo a

a, (Q)M—*—"—Ref{D;[(X@)WHy—n)] log[ (x-&)w+(y-m)]' DL[L(W,L)
} 2n? (2m-2)! +@

with 0 < h < 2m (agzm)Eaj) , 0<|pl<2m , 0ﬁlQ|ﬁ2m,it

follows that E, P(z,¢) = O(lz-¢|)

In the usual”way the following theorem of the generalized Poisson
formula can be proved.

I. Let T be a bounded domain of the z-plane and ¢({) a uniform

Hoélder continuous function in the closure T . The function

ul(z) = [fo(t) P(t,z)dr
5 ¢

+A\

Z -
belongs to C m for ze¢ T and for ze T the generalized Poisson

formula holds

Eu = qo(z)+ffp(;,)Ezgﬁi'(t_,,z)d-rg : (L1
T
The same result holds when the roles of z and { are interchange
in the function @(¢t, z)

§2. The principal fundamental solution

The method of Fredholm equations can be applied to second order
linear elliptic equations provided a particular fundamental solution
can be used which is defined in the whole space, has the proper be-
havior at infinity and satisfies, as a function of ¢ , the adjoint
equation. Such a fundamental solution has been constructed by
Giraud and we shall call it, following [15], the principal fundamental
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solution (p.f.s.). This kind of solution is needed when the method
of integral equations, whether of Fredholm or singular type, requires
to be extended to higher order equations with variable coefficients?.
However, since we are interested in a bounded domain, we shall
construct such p. f. s in a circular domain T containing in its interior
A and replace the behavior at infinity by proper conditions on the
poundary 8T of T . Let r; and r; be two positive numbers such
that r, <rz and ze A imply |z} <r, . Weput p= |z| 3
® = arg z and for any p and q such that [p| + Iq| = 2m we con-
gider @ function apg of the class sz'HL satisfying the following
conditions

3% 8°a
pq _ Pq
5 5
ap pP=1Iy ap pP=1
m
5° 1 (i+j) o
= —— |= = if i4+j even
Bsﬂ aps i+j+l Z)
jele
00> | p=1s =0 if i+ odd .

{pE (m'lgl) 3 qE {m'J,]) y S =0,l,...,2m

For 0 < |p|+|q| < 2m we consider a function a of the class
CH)‘ (t = max( |pl, |ql}) satisfying the conditions

Bsapq Bsapq asapq
pe = [ e==2 y: | B = 0 (s=0,...,t).
ap p=TI] ap p=T) ap pP=T
Let us put a; = a " . ., andlet r'y and r', be two
k .Zl (m-i, i) (m-j, j) : ’
i+j=k
positive numbers such that r;, <r', <r'; <r, and moreover
2m
2m-k k m
_ Z ak(z}h e zc(?\zi-pz) 2
k=0

(with ¢ a positive constant) for r; < |z| <r'y , r'y < Iz[ <13
and for any real vector (X, p) = N -

Let G(p, ) be the Green’s function for the boundary value prob-
lem in the interval (r;,r;)

p=r;

4

iU RO i QR
dm+2z 7 ’ Tde 0 T . 2m

dp P dp p:rl
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Let p(r4,r%) be a positive number such that for r', <p<r%

Iz
v(p) :f G(p,T)e(T)dr > p(ri,r2)min ¢(7)
I (rhisr)

We denote by C a positive constant such that
2m

2 ar(z) N
k=0
|p|+|q| = 2m , a set of arbitrary constant ﬁpq such that

2m
2m-k x 2C 3l e T
Lot T Bt i) W 2 aim g e
k:O(iﬂ': (m-l,l)(m-],l}) p(rl,rk)

Zm_kp.k iG(h2+p2]m (r; < |z | <r;) and assume, for

Let, for 1; < |z <1 ,

Iz
at (z) = a_ (2) +B__ [ a(p,r)dr

Pgq |
and consider the functions (p = (m-i,i) , g = (m-j,j))
= a lzl s
pa ==
= a¥% ry < iZl <r
DG = <I;
CO m
1
=4 =8 Tt (}-ﬂ) , if i+j even ,
B i+j+41 \ 2 ] =
= Z 2
=0 , if i+j odd

and for 0 < Jp|+|ql < 2m

= <
apq |Z|_r1 s
(a’ 4 = <
pq U.pq r1*|Zl§r2 s
=0 |zlir3

p“"-’ q ~—
Let Eu be the operator D" apq D u where =a
P Pq (0,0)(0,0) ~ %0, 0)(0,

It is easily seen that Fu is positive elliptic in any point of the ple
and its coefficients enjoy the same regularity properties as the co-
efficients of the former operator Eu

Let R>r, be a positive number and denote by T the circular
domain ]z| <R . Let u,v be any functions u and v belonging
C2M and with support in T . We put

0, m
”U.”;1 = E f|DpUlZdT, B(u,v) = Z( {-l)lp|f"ad Dpu
0<|pl<m T Ipl,lal T P4
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According to a fundamental result due to Géarding, two positive con-
stants a@g and by exist such that, when

m

-1) a z)>a forany ze T (2.2

-17200, 010, 0 (2 > ¥
then

(-1)™B(u, u) > by “u”?n (support of uC T ).
Let us suppose (2.1) to be satisfied and assume two positive numbers
r; and ry suchthat r, <r; <ry <R . Let us consider the function
defined by

N 3

(0, 0)(0, 0) 2l <55

__P-T3 )
%(0, 0)(0, 0)(1 te T3 n<lel <n,

= 0 'z[ir};

30, 0)(0, 0)

Let us denote by E' the operator having as coefficients the functions

~

dpq for |pi+|q| >0 and let a' 0, 0)(0, 0) be the coefficient of u
If we denote by B'(u, v) the bilindar form corresponding to E' , the
Garding inequality

(-1 "B (u,u) > by [ul? (2.2)

(bly >0 ; supportof uCT)

is satisfied since

I

-1)™B(u,u)  if UC T
3

m
m 1
kgo f( Koy™ k)d e fa(UJO}(O,OJUZdX

if UC'T-T
Iz

(-l)mB'(u, u)

1

Here U denotes the support of u and T the circular domain
|z| <r;i . It must be observed that for fz] >r, the operator E'
9% a2
coincides with the iterated Laplace operator Azm (8 T+ oy’ )
When we shall consider the parametrix £(z, t) it will be assumed
that it refers to the new operator E'. For simplicity of writing, in
what follows we shall write the letter E instead of E', the letter
dpg Iinstead of dpg for |pl+lal >0 and a(o’ 0)(0, 0) instead of

a0, 0)(0, 0)
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Let us denote by g(z,¢) the function defined by the following
conditions :

aimg(z,g)zo for ze T , €e T
Dgg(z, t) =-D29’(§,, z) 0<lpl<m-1 for zcoT , LeT

The existence of such a function is quite classical since it is a regu-
lar part of the Green's function for the Lauricella problem ( Dirichlet

2
problem) for the polyharmonic equation Aum =0 (see[19],[21]);
glz,t) is an analytic function of (x,y; §,n) , where z =xtiy,
t =£+in , in TXT . Let us consider as a new parametrix in the
domain T , for the operator E , the function
Sz, t) =P(L,2) +g(z,8) . For |z| >r, , F(z,¢) coincides
with the Green's function for the Dirichlet problem in T for the

2
equation Aum =0 . Let {ap(2z)} and {Py(z)} (h=1,...,qd) be

2m+h
two sets of arbitrary functions belonging respectively to C and
to CM and such that the support of any a; is contained in T . Let
p denote a real parameter. We put

a
wz) = [ o[ Az ) +p ) o (2)B,(0)]dr, . (2.3)
T h=1 .

The function u satisfies the homogeneous boundary condition pDPu =
(0 < ]p| <m-1) . If we impose once more the condition Eu ={ in
any pointof T ( f a given function, belonging to C)‘ ), we obtain
the Fredholm integral equation

q
£(2) = o(2) +[@(O[EF (2, )+ p ), (Eay(2))B, (L) ]dr (2.4)
T 2 h=1 5

whose kernel depends on the parameter p . We want to prove that a
choice of q , ap, By is possible in such a way that for some real
. the associated homogeneous equation

q
0 =¢(2) + [(O[E,Fz, ) +p ), (Eay(2))B, (L) ]dr, (2.5)
T h=1

has no eigensolutions. Let us denote by %% the Hilbert space of th
real functions of integrable square in T with the classical scalar
product. Let us consider the operators

&(9) = [o(DE_Hz, tdr, , E%(o) = [ ol LB, S, 2)dr
T

T L

g

Qle) = [9(t) ) (Ea (2))B (L)dr
T bl B a 5
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If the equation
O=¢+ &(0) (2.6)

nas no eigensolution, then we assume p =0. Suppose the equation
has an eigensolution. Consider a complete and orthonormal set of
linearly independent elgensolu’cmns Bilz), s [Sq{ z) of the equation
(2.6). Let B*,(z),.. {3* (z) be an analogous system for the ad-
joint equation

O=¢+&%e) . (2.7)

Let us suppose that n is the maximum of the rank of the matrix
{(E(ap), B*k}} (h,k =1,...,q) , when aj,... Qg vary in the class
of functions belonging to C2 and with support in T . Suppose
n<q , and choose a,,...,a, suchthat det{(E(a}), Brp)} # 0,
(h,k =1,...,n) . Let ¢1,...,Cpqy be a non-trivial solution of the
n+l
homogeneous system 2 c. (E(a,),P* ) =0 (h=1,...,n) and put
3 h k
n+l k=l
Bx = Z ckﬁ*k The function B* , since it is an eigensolution of
k=1
(2.7), belongs to Cz , as is easily seen. Moreover, since
(E(a),Pp*)= (a,E*(p*)) = 0 for any a (with support in T ) we have
E¥(p*)= 0 . This implies, by using Green's identity, since

pk = - &*(p*) , that

[ B L7t 2),p%(0)]ds, (2.8)

where H is a bilinear form operating on the derivatives of & and
those of P* . On the other hand the right-hand side of ( 2.8) gives
the solution of the Lauricella problem for the equation A 2y - 0 such
that DPu = DPp% on 8T (0 < |p| < m-1) . This implies that DPB* =0
(0< lpl <m-l) on 8T . Also from (2. 2) it follows that B* =0 in
T . This is a contradiction. Thus we have proved n = ¢

Let us assume the ay, such that det{(E(ay), i3k )} # 0

(h,k =1,...,49) . The equation (2.5) can be written

0 = o+ &) +1Q(e) . (2.9)
Let U(P*1,.0., [3 be the linear manifold spanned by all the real
linear combinatlons of functions P*;,..., 13 and let P be the pro-

jectoron V= %2 © U(P*y,...,p* q) A that is to say on the range of
the operator S+ & (. = identity operator).

A unique linear bounded operator A exists such that for any
ye £?% the conditions

RPY + ERPY = Py, (RPy, ) = 0 (h=1...,9)
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are satisfied. Equation (2.9) implies that

¢ = -pAPQgy + hi_}“"’ﬁh’ﬁh
Let us put #PQ =7 , assume 0 < lul < 711" , and consider the

[v.a]
operator ,9; = E (-p)kfk . Every eigensolution of (2.9) is given
gq k=0
by ¢ =), (9B ) #B, . Moreover, since (Q(¢),B* ) =0 , we ha
h=1 P
gq
hE:l(qo,Bh)(_QEf;Bp,B*k) =0 (k=l...,q ,

This implies that A(p) = det{Q B, B*)} =0 (hk =1,...,q)

Since A(p) is a holomorphic function of p in the neighborhood of
p =0 and

A(o) =det {(QB,,B* )} = det {(E(a,),p* )} # 0

it follows that for p # 0 and [p[ small enough, equation (2.9) ha:
no eigensolution. Let R(z,{) be the resolvent kernel of the Fredho
equation (2.4). From (2.3) we deduce

u(z) = [E({)F(z, ¢)dr
3 4
where

a
Fz,8) = A(2,0) + p ) o (2)B (L) +
h=l

!
+ [ [ Sz,w) +1 ), a (2)B, (W) IR(w,)dr
T h=1

The function F(z,¢) is the desired principal fundamental solution,
By repeating the argument when considering the adjoint operator E*
instead of E , we get the corresponding function F*(z,{) and a
classical argument proves that F#(z,{) =F({,z) (see[15], p. 17)
The properties of F(z,{) are obtained by using standard arguments
(see [15], p. 51).

What we want to note explicitly are the following properties

EF(z,L) =0 (ze¢T,¢teT), DoF(z,4) =0 (z €dT, LeT,

0 < |pl <m-1)

I

E>1;;P(z,«’;,) =0 (ze T, {eT), D'F(z¢)

¢ 0 (ze T, te 8T,

0< [pl <m-1)

p -4 _ joge|
D, D,F(z,¢) = O(D, D, #(z,8) (0< |pl

+

lal < 2m)
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In particular

2Rz yml__ 2 sy
m—hayhagm-l-kank szm-l-( h+k) 8yh+k

+O(loglz-¢])
(2.10)

90X

Theorem I also holds if we replace £(¢,z) by F(z,t) . Of course
(1.1) must be replaced by the equation Eu =¢.

Remark: The method outlined for obtaining the p.f.s. works ex-
actly the same in the case of any number of independent variables.

§3. Some results of line-potential theory

Let ¢ be a real function defined on 8A and satisfying on 09A
a uniform Holder condition, briefly ¢ ¢ CM8A) . The following the-
orem holds

II. With the assumed hypotheses concerning 9A and ¢ , for

any z ¢ A let us consider the function

aBm—l
v (2) = [ o(0)———— Pz,0)ds (0 <k < 2m-1) .
%

k 5 5y 2M-1-K ¢

vk(z) satisfies at any boundary point z° of 9A the limit relation

2m-1-k
Hm v (2) =@(2') o= Im [ MW _
o k 2w L(w, z°) (x°w+y?)
Zry +
(3.1)
1 f WZm—l—kdw
- >=rRe [g(L)ds 5 - ,
when z tends to z° remaining in the interior of A . (The dot

denotes differentiation with respect to the arc length on 8A oriented

in the counter-clockwise sense). The integral over 8A in the right-

hand side must be understood as a singular Cauchy integral.

For any fixed w on I (I" chosen independent of z , since =z
varies in A) we consider the integral

40(?;}dsg
A (x-E)w+(y-n)

(z ¢ 2A)

By the transformation z; =xw+y , putting {;= £Ew+n and denoting
by = the contour obtained by transforming 8A , we have



66 Singular Integral Equations

ds do ds dt, dg,
plz,w) = [ o(t) g —= = [ o(t,) o=

= do Zy -
5 - z) -t 5 ;1 £ 1-L1

Here o, denotes the arc length on = (curvilinear abscissa of ¢, )
and ! &(Ew+n) = (L) . Let z,° be the point on & correspond-
ing to the point z° on 8A . We have (for z¢ A ), using the Plemelj
formula (see [18], p. 42)

ds -
lim p(z,w) = lim f ch(?;l}dgi; 3;‘1 dt, -
0 0 z1-8,
27z zy 7z +2 & €y
ds - ds =
: g dg, ¢ _dg dg)
=-11T(IJ(Z?)( a"‘f (L) 0 =
do do = do do AR
Ly 8 = = G SR =
-imep(2%) ¢(L)ds
s e ap & (3.2)
Xw + ¥° (x°-E)wH(y"-n) '
A
The modulus of continuity of the function
ds =
f B(¢,) ¢ _dg, dg,
do do -
+Z Ly L1 21-b1
dSg di
depends on the Hdder coefficient and exponent of &(z,) P as_l 5

as a function of ¢; on = , and on a geometrical &1 &1
constant of the curve = (see [18], p. 39).

When w varies on I' all these constants can be chosen inde-
pendent of w . It follows that the limit relation (3. 2) is uniform
with respect to w . We have

1 ( WZm—l—k
= e R d
vk(z) >n? ea£¢’(i;) S?; I L(W,E_')[(x_g)wi—(y—n)]dw

so that
p(t)ds

Zrnlk 4 -
aw IL(W L) [(x-E)w+(y- n)]} '

lim v, (z) = lim
z~+z° . z-+z°

2m-1-k ¢(t)ds

(29 dw 1 2m-1-k ¢
2T I fL{w z%)(X° w+y®) T 2m? R+£ d"gg{uw,é)[(ﬂ-&)wwv"'n

Since, as it is easily seen, the order of integrations can be changed in
the last integral on the right-hand side, (3.1) is proved.
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§4. Singular integral system for the Dirichlet problem

Let us now consider problem D) of section 1 and suppose the
given real function f to be, uniformly Hdder continuous in A .

Since uygy(z) = ff( L)F( z, I;)d"r,; is a particular solution (of class

szH\ in A) & of the equation Eu =f we have no loss of generality

if we consider problem D) for £= 0.
Let us assume as given boundary functions (P = Ll,i( P1,Pz) con-
tinuous real functions satisfying the compatibility conditions

z #
LlJ(pl,pz)(z) _¢(p1;p2){zo) %[ w(pﬁl, pz)dg +¢(p1,pz+l)dn]
Zg
f[¢(pl+l’ P2) 4y 4 Lp{pl,pzﬂ)dy] = g (4.1)

SA
(0<p; <m-2, 0<p; <m-2) .
Moreover since we seek a solution of class Gm in & we must sup-
pose that L]Jp for |p] =m-1 possesses a continuous derivative with

. . ayP
respect to s . Since the mere continuity of 35 (|p| = m-1) does
not insure that the solution belongs to c™ as classical examples in
AP

the case m =1 show—we shall suppose that 7 is uniformly Hé&lder
continuous on 9A .

p
Put p = (m-1-h,h) and put Yy = a—gJ; . Let ox(l) (k=0,...,m-])
be real functions belonging to C (8A) and consider the function
u(z) = /, f €9k(§.)m F(z, Q)dsg . (4. 2)
k=0 B8A B¢ an

; Hl . R .
u(z) isof class C  in X and sz in A and satisfies in A the
equation Eu =0 . We want to determine the ¢x in such a way that
u satisfies the boundary conditions

0
3s Y m-1-h h = ¥ (4.3)
x Y
From (2.10) and (3.1) we obtain for any z e 8A
m-1 Ml r min) o 2m=2-(h#k)
SR CR) {Tlmf e AW -
k=0 +T ’
1 2m-2-(h+k) (i) i (4. 4)
- R d d
272 Ziqﬂk(ﬁ) SQIP L(w; et W+ éfgk(C)th(z, mds;
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The kernels ME’ (z, {) are regular for z#{ and are Of 10g|lz—rgl) :
Let us introﬁuce the function defined for wC T ,
(z,¢) ¢ 9A X 3A

Ty
3 - i__gw-!_zﬁ » Z#:?;
K(w, z, {) z-{ z-§
=1 , z=1¢ .

forany we ' , K is uniformly Holder continuous with respect to
(z,¢) in A X dA (see [4], p. 155).
Put H(w,z,¢) =K(w,z,¢)-1 . We have

Twty) 1, Hw,z1)
(x-E)w+(y-n) z-{ z-{
Then
2m-2-(h+k),. 3
(xw+y)
[ oxityas, [ dw =
A L ir L(w, {)[(x-£)w + (y-m) ]
2m-2-(h+k)
dw H, (w, 2z, t) 2m-2-(h+k)
=f wk(é)df;fw : +f <pk(t’,)d§,f—-—‘ 1 2y dw
+T o MW =b gy L
where
_ H(w, z, §) 1 1
Hi(w, 2,8) =~y T Tiw, o)~ L(w, 2)
On the other hand we have
WZm—Z-—(h+k]dw alridr
Re L(w, z) I gt
+T ’ +8A
) S22 (k) o gy
= - (Re Wz f ‘- +
4T ’ +san =%

me-Zm(h+k)

dw fq,k{g)gi-*loglz—ﬂdsr:
+OA t

+T L(w, z)
( n, is the inward normal at 8A in §).
We can now write the singular system (4.4) in the canonical form
(see [18], p. 4l6).

)
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m-1

b (z) o (L)
-1 hk k
(-1 2ny (2) = ), {a (z)o, (2)+— [ dt +
h K20 hk k i Sk t-z
' (4. 5)
+ [ o (M (2, ;)d;} , (h=0,...,m-]) ,
+8A
where
f WZm—Z—(h-!—k} IWZm-Z—(hH()
a, . (z)=-Im : dw , b, (z) =iRe dw
hk i L(w, z) hk +T L(w, z)
1
th(z,{_',) = O(_——_l_-k) § {0<?\§l)
|z-¢|

Let us denote by &/ and % the matrices {apk}, {bpx} ,
(h,k =0, ym-1) . In order to show that the system (4.5) is of
regular type ([18], p. 417) we must prove that
5(z) = det{./ - Z}det{.o/+#} never vanishes on 9A . This amounts
to proving that

) W2m-2-(h+k}
8y (z) = det J v, 2) dwy #0 (z ¢ BA) .
+I'
Suppose, for some z , &(z) =0 . Let ¢p,... »Cm-1 be a non-
trivial solution of the system
- W2m-2—(h-l-k)
2o T W =0 (b 200, v i)

+T
m-1l-k .
If we put P(w) = Z ckw , for any polynomial Q(w) of degree

<m-1 , the following equation holds

Q(w) P(w)
f L(w 2y 9% =0 . (4.6)
We can choose Q(w) in such a way that the function
Q(w)P(w)[L(w,2)]™' has a simple pole and no other singularity in
the domain bounded by T" . This contradicts (4. 6).

Deforming I into the real axis, we get

2m-2-(h+k) +o0  2m-2-( h+tk)
w u

L(w, z) W = f L(u, z) e

+I -

and, therefore, ahk(z) =0 . From this we deduce that, denoting by
k the index ([18], p. 419) of the system (4.5) we have «k =0 . This
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means that for the system (4.5) the same Fredholm theorems of the
regular integral system hold.

§5. Determination of the eigensolutions of the homogeneous integral

system. Existence theorem

Let us consider the associated homogeneous system

m-1( b, (z) o, (L)
hk k r
0 = ), — dt + | ¢ (LM (z,;)d;}

kzo{ W fgy U g R Ok (5.1)

(h=0,...,m-1)

We shall say that the (m-1)-vector g(z) = (go(2),... (z)) is
an elgensolutlon of (5.1) of the first kind when some of t’ne gk( Z)
are not identically vanishing in 8A and

ml

Z fg{é} F(z,t)ds, = 0 { 5.2)
k=0 A X agmlkank °

for any ze T . An eigensolution of (5.1) that is not of the first kind
will be called of the second kind. Since

r-1 m-1

-1 9 F(z,¢t) =15 3. o
2 i [ L WET m) ED
20 A agm—l-k-jankﬂ

(r = 2, sunsm 5 k=20 5 5 ;M=T)

forany ze T , we obtamw eigensolutions g(r’k)
kind by defining the components of g'T» k) as follows

of the first

r-1
(ryk) _ (r, k) (£, k) _ r-l.dE (r k) ,r-l g
gO _03"‘}gkl _O’gk _(O)ds 3. k.“l’] _(J)
r-1
(r, k) {r,k) _ SR ).
a1 = lzel) T o0 Gy = Oeeengyty =0
(r, k)

It is easily seen that the g are linearly independent.

We prove now that any eigensolution of the first kind is a linear
combination with constant coefficients of the g(f, k) | Let
= (gryeee, dp-1) bean elgensolutlon of the first kind. Since any
function £(¢) of class C” and support in T can be represented,
for £t e T , as follows

f(2) = [ w(2)F(z,0)dr (k= E%(f)) ,
T
from (5. 2) it follows
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m-1 m-1
] f
G (L) ————=d&. =0
g’o a{\ S ™
The statement regarding g is a consequence of the arbitrariness of
the function £
The dimension of the linear manifold # of the eigensolutions of
(5.1) is equal to the number of linearly independent conditions of
compatibility that must be satisfied by the known terms yp of system
(4.5). This is a consequence of the fact that =0 .
Since the 1y}, are related to the function u(z) defined by (4. 2),
by means of the equations (4. 3) we obtain the following independent
necessary conditions for the solvability of system (4.5).

-1 T
S, =0 Haw ' Iy s = 0 (5:3)
oA i=0

(h=0,1,...,m-1) (r=2,...,m; k=0,...,m-r) .

It follows that d = dim .# > minptl)

We prove now that d < m® . Let us suplg?se d > m? , then we
have a complete system in .# constituted by Bl eigensolutions
of the first kind and m_(;_n_-l_-ﬂ +q (qg>0) elgensolutlons of the second
kind.

If b=(bg,...,b,_;) is an eigensolution of the second kind, it
is on QA

pMm- -1 0, m-1 i
dg= T [ B — e Flz, 0ds = ), o Xy
k=0 3A o an i,]

Since g > 0 , it is possible to choose a linear combination of the

eigensolutions of the second kind, with some coefficients different

from zero, in such a way that the corresponding eigensolution is of

the first kind. This is a contradiction.

m(m-1) m{m+l)
2 Z )

consider the adjoint homogeneous system, which we write as follows

Let us assume d = +r (m o e Let us now

5 2m-2

0 Bl z L)
Z fv (z) ds . (5. 4)
h=0 HA z axmhl hagmkl k z

(k =0,...,m-1)

We shall call eigensolution of the first kind for the system (5.4) any
eigensolution v = (yg, ..., Ym-l) such that
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m-1 5 Bm_lF(z, )
Z f Yh{z) 9s m-1-h_h dsz = 0
h=0 B8A z 0OX oy

for any e T.
A similar argument, as in the case of system (5.1), proves that

m(m+1) linearly independent eigensolutions of the first kind exist

and any eigensolution of the first kind is expressed as a linear com-

bination of these M eigensolutions. An eigensolution of (5. 4),

which is not of the first kind, is called of the second kind. A com-
plete system in the linear manifold of the eigensolutions of (5. 4) is

m(m+l) eigensolutions of the first kind and r-m of

2
the second kind., Let v(l) i v{r—m) be the eigensolutions of the

second kind. If r > m it is possible to choose r-m points
Liy.v.slp_qm in T - A such that

m-1 m-1

(i) o a F(z, Lx)

det E fv (z) . ds}:ﬁo
{h=0 oA P 98, pulBol-hy b e

constituted by

(,k =1,...,r-m)

Let us suppose that this is not true and be n <r-m the rank of the
corresponding matrix. Let {;,...,%{, be n pointsin T - A such
that

m-1 : m-1
ol [ D SoHER | oo
h=0 8A z ax" ey Z

(1, K = 1y i)

LBt €y vy Co4 @ non-trivial solution of the homogeneous system
ntl m-1 m-1
i a 9
L e Lo J "}(11)(2) as m-Fl(-lzu’ glﬁ)dsz ~ B
i=l h=0 0A Zz ox oy
(k =1,...,n)
n+l 1) _
Let us assume v = E civ 2 . Forany {e T-A itis
i=l
m-1 m-1
] 3]
Vo (L) = Z f vh(z)as m-fflf} gl_idsz =1
h=0 9A z 00X oy

We suppose now oA e CIH‘ with A > 1. Then it is v € CK( 04A) with
\> 1 and, consequently, |]vD | <400 (see [18], p. 51). It follows
Vo(¢) =0 inT. Then v is orP the first kind. This is impossible.
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m-1
(k) 9 @ F(z, tx) ;
Let us put for z ¢ 8A fh =8 Lh. b It is possible
X oy
to determine the constants a;,..., CH in such a way that
r-m (%)
Y, =, - Z a f verify the condition
h h ) k'h
E m-1

Y, [ Fvds=(3,v) =0
h=0 B8A hoh
for any eigensolution of (5.4). The constants ax are expressed as
follows

r-m }
ak = (Y, E Aikv{l)) = (\li,ld«(k)}

i=]

where Aix is a known constant.
The integral system (4. 5) admits one solution when r =m . In

the case r >m, one solution exists if 4y (h =0,...,m-1) isre-
placed by th
(1) . (2) (r)

Let b"',Db p aeih 5D be r eigensolutions of the second kind
for the system (5.1) such that, together with the m(Lz_l) eigensolu-
tions g(r’ k) they constitute a complete set in .# .

For every m-vector ¢ = (¢g,...,¢,_1) we put, for ze¢ T ,

m-1 m-1
0 E(z
Flo) = L [ o1 —HE s
h=0 8A B¢ on
; ; (k) _ (k) - ;
Let us consider the functions v "(2z) = F(bV ") , K =),...,7;
v(k] is a solution of Ev{k) =0 in A andin T-A , of class
B G T oand T3 and vertfies thie boundary conditions
o 8m_lv o)
CTE R v o 0, (h=0,...,m-1) on 8A and Dv =0 ,
o oy

(0<|pl <m-1) on aT
Let f and g be two real functions defined on 8A . We consider
on 0A the scalar product

f fgds = [f{,4q]

oA
Let us suppose that the o = Lt functions xiyj (1,j =0,...,m-))
are linearly independent on 98A° . This means that the curve 8A is
not algebraic. We have no loss of generality in assuming this hypoth-
esis since we can always use a proper change of coordinates such that
9A is transformed into a non-algebraic curve.
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With respect to the introduced scalar product we onhonorn}?lize
the system of ¢ functions x'y’ (i,j =0,...,m-1) . Let h( younyl
be the corresponding orthonormal system. We have on 8A

U ¥ .
Ay = Sl Ml
i=l

The rank g of the matrix {[v(k),h(l)]} (k =)yne o9 f=1...,
is r , since for g <r it would be possible to choose r constants

k
(k) be an eigensolution of the first kind.

r
Cry«e+)C, such that Z Ckb
k=1 i

Let u(z) be a solution of the equation Eu = 0 of class C

in K , that admits for z ¢ A the representation

+X\

r-m r (k)
u(z) = Flo) + ), aFlz,t )+ ) cv " | (5.5)
n=1 R |

Then ¢ is a solution of (4.5) where Yy, is replaced by ﬁTh . We supposs¢
that ¢ is a solution satisfying the conditions (o, bk)y =0

(k =1,...,r) . The vector ¢ is expressedby ¢ = @’J where

% is assumed to be a well-determined linear transformation (resolver
transformation) operating on ’Jf . The properties of # are well knowr
from the theory of singular integral equations. We have

~ i ~ B i
(72T, 2 - (T, 2%
with a self-explanatory meaning for the transformations #%* and R *

From (5. 5) it follows
r

(0,597 - @, = 3 o (v1¥, 08 (5. 6)
k=l
where
{ N r-m . r-m ,
o) = grgren® - Y () ) LT (R, ), 0
k=l k=1

(k)

Let us suppose A, = det{[v h(l)]}q‘-o s Aksi=dies sr) s

From (5. 6) it follows for o >r

(r+i) . s (k) (r+i) .
[u, a0 T4 ) Byh ] - W, Agu By 3 By
k=1 .
SEI T X LB,

The Bjk are constants independent of u . For ¢>r there must exis
some ¢* e T-A suchthat u =F(z, {*) does not admit the represent:
tion (5.5). In the opposite case we must have
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[F(z, {),A0h h) () +E B, h( (2)] - (8(2, £),800 ) (2) +Z B km( () =0

k=1 k=1 (5.8)
forany (e T- A . ®(z, {) denotes the vector | corresponding to
F(z,t) as a functionof z . Since the vectors wt) are uniformly
Hélder-continuous on 8A with an exponent A\ >4 5, (5.8) holds for any

te T. TItiollows that (5.7) must be satisfied for any u of class
c® with support in T . This implies

th(r-i-] +Z B h )_ 0 on 9A . This is a contradiction. We put
k=1

v(Hl)(z) 5 —F(Z L) +E (@(z g )’p. (Z))F(Z,g ) + y(ﬁo)

n=1
r-m (n)

where ¢(z) = Z[8(z,8%) - T (o(z, %), "
n=1

function v(rﬂ) is a solution of class c™™ in A andin A-T of

the equation Eu = 0 which satisfies the same boundary condltlons

as vik) (k =1, ,r) . The rank q of the matrix {[v(k} ]}

(k=1,...,141 ; i=l,...,cr) is r+l . Let us suppose q4r+l

Then it is possible to find r constants such that v''t) =

(n)

(z))f" (z)] . The

= E akv(k) in A . This implies that F(z, {*) admits the represen-
k=1

tation (5. 5).
By 1teratm<):; the procedure we determine o-r functions
ylr+l such that
det{[v\®) n} 7320 (kyi=1...,0) . (5.9)

For proving the ex1stence theorem we first solve the system (4. 5)
where 1}, is replaced by th (for r>m) . Thereafter we determine
the constants c¢;,...,cs in such a way that the function

=11
u(z):ﬁ'ﬁ?$+2(¢,p )F(z;)+z Ckv %)

n=1 =]

satisfies the boundary condition Dpu = LLJp (0 < |p| <m-1) . This

is possible since (4.1),(5.9). Thus we have provedthe following existence
theorem

III. In the assumed hypotheses for the operator E , the domain

A, the known term f and the boundary function L|Jp (0< ]p| <m-1)

2
one (and only one) solution of the problem D) exists of class C n

in A and ¢™ in A
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§6. The equation Eu + \u =f{

We want now to consider problem D) for the equation Eu+iu =1,
where )\ is a real constant. We denote this problem by D, and
assume on f and LIJp the same hypotheses as in the considered case
=10,

Let G(z, t) be the Green's function for problem D) with respect
to the operator E. We have G(z,.) =g(z,t) +F(z,{) where
g(z,t) is defined by the conditions

EZQ(Z,§)=0 (z,8) ¢ A,
pP s [DEP it ¢ lnll gt 8A, L ¢ A
zg{Z,é)—- z(z,t_,) (0<|[pl <m-1, ze 5 G ) -
Let uy, be the function determined by the conditions
Euy =0 1 Py = ¢P Ip]
Uy = in A D"y =4 on B8A (0< [pl <m-l)

A solution u of the problem considered exists when and only when a
solution p of the following Fredholm integral equation in A exists

p(z) +2[G(z,L)p(L) = £(2) - Aup(z) . (6.1)
A
Then we have

u(z) =ug(z) + [p(L)G(z, L)dr
A 4
It follows that if \ is not an eigenvalue for (6.1), we have one and
only one solution of problem D?\ . If X is an eigenvalue we have a
linear manifold of finite dimension of eigensolutions n for the prob-
lem D’{ adjoint to D, . A solution of problem D, exists when and
only when the following conditions are satisfied

[tt(z) - Auo(2z))n(z)dr =0 (6.2)
A
for every eigensolution n
Suppose n be of class sz'l in A , then it is possible to
prove that

Afugmdr = [o(yP, DPn)ds
A A

where ¢ is a bilinear form operating on Dpu0 , (0< ]p| <m-l)
and DYy , (mflql_SZm—l) .
The compatibility conditions are the following

[fadr + [ (4P, DPn)ds =0 . (6. 3)
A 9A
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IV. For the problem D, the alternative theorem holds. There

exists a finite or countable (or empty) set of eigenvalues. When the

eigensolutions of 1:}': are of class sz_l in A, the compatibility condi-

tions can be written as (6. 3).

§7. Application to anisotropic inhomogeneous plane elastic systems

~ ~ ~
L1)XX + 41,y7 + L1axy

I

e

K
. I M

eYy = L1 pXX + L ¥y + Laaxy {#.1)
~ ) N

ZEXY = £13XX+123YY+.E33XY 3

where exx s exy y Byy are the components of the plane deformation

and xx xy, yy the stress components™*, In the general case of an
amsotroplc inhomogeneous system, the f;; are arbitrary functions of
z , only subjected to some regularity conditions (continuity, differ-
entiability, etc.) and such that the quadratic form £i;(z)Ai\; in
the real variables \;, X\, A3 be positive definite. We have for the
strain components the compatibility condition

azexx 9%e y 9%e

¥
+
Byz ax’

Xy
9xX 0y

(7.2)
and for the stresses components the indefinite equation of equilibrium

a a
IXK IXy

ox * ay = B
(7.3)
Ty e
oxy 4 oyy b
9x ay B

where b = (b;,b,) is a given vector (body-vector).

Lert\us suppose that a particular solution of (7. 3) is given:
XXy , XYy , YYo and that the equilibrium problem is studied in the
simply connected domain A considered in the previous sections.
.Then by introducing the Airy’s stress function u , we have

. O N~ 8%u
XX = ayZ YY = ¥Y¥o * 35
~ o 8%u (74
Xy = XYU - axay
B tuti . :
y substituting the expressions of 8 eyy, exy given by (7.1) in

(7.2) we get
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82 ) A m
Fyry (L£12XX + L9y + L3 Xy) -
a2 ~ ~ ~
-ﬁy(flaxx+fstY+133XY} #+ (7.5)
9° ) N ~
'1‘@(31159{‘1‘ Lpyy +lpxy) = 0

Let us now substitute in (7.5) the stresses as{given byA?. 4)\and .
denote by f the result of replacing xx, yy, Xy , by XX, VVo , XVo
in the left hand side of (7.5). We get

_ 92 9%u 9%u - 9%u
E(u) = 5= (L), gy_z“' L2z 5oz = Les BxBy )
8% 9%u 3%u 8%u
B E}:»cay(JEH dy? t L2 ox% £33 axoy )+
5% 8%u 9%u 8%u
+ W {’ell ayz + ‘812 axz - ’213 axay ) = f

The equilibrium problems for the plane system are translated into
boundary value problems for the equation Eu =f . For instance, the
Dirichlet problem corresponds to the physical problem of forces given
on the boundary 8A of A . Of course the solution of this problem
must be of class C? in A since the continuity o;\theﬁsecond deriva-
tives of u corresponds to the continuity of xx, yy, xy .

In order to apply the theory developed in this paper we must only
verify that E is positive elliptic. This is an immediate consequence
of the positive-definiteness of the quadratic form £i;\*\7

NOTES
:‘:The subscript z under the operator D means that this operates on
P(z,t) as a function of =z

§Prof. Agmon in his paper[1l] concerning his double layer extension
states: '"'A similar approach could also be used in the case of variable
coefficients if a fundamental solution in the large is available'. 1
wish to observe that when dealing with variable coefficients, more
than a fundamental solution in the large is needed, in fact a principal
fundamental solution must be used.

#The integral is extended over the arc of A between z, and z des-
cribed in the positive sense by a point starting from z, and going to
z

-
This scalar product has obviously a different meaning from the scalar
product introduced in section 2.
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10.

11.

iz,

13,

14,

15.

*-'We use the same notations as in Milne-Thomson [ 14].
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