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ABSTRACT

In this paper, a new method of boundary reduction is proposed, which reduces the
elliptic boundary value problems to integro-differential equations on the boundary and
preserves the self-adjointness of the original problems. Moreover, a new boundary finite
element method based on these integro-differential equations is presented and the error
estimates of the numerical approximations are given. The numerical example shows that
this new method is more effective.
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I. INTRODUCTION

In recent years, the boundary finite element method has been extensively ap-
plied to many fields of engineering and technology'?, This method can be considered
as a numerical method to obtain the numerical solution of the boundary value
problem for partial differential equations by reducing them to the integral equations
over the boundary. This method has an advantage of reducing the dimensionality
of the problem by one dimension and hence produces a much smaller system of
equations. But, in general, the self-adjointness of the original problem is not pre-
served after the reduction. From the computational point of view, the loss of the
self-adjointness brings much trouble, such as more storage locations and more com-
puter time. Among them there is an exception that the single layer theory can
be applied to the Dirichlet problem of elliptic equations without loss of self-ad-
jointness. In 1961, G. Fichera™ succeeded in extending the single layer theory to
the Dirichlet problem for strongly elliptic equations of higher order in two inde-
pendent variables. The boundary integral equations deduced by Fichera’s method
preserve the self-adjointness of the original problems. After a little more than a
decade, the variational formulations of these boundary integral equations amenable
to finite element approximations were given. Furthermore the error estimates of
the approximate solutions were obtained by J. C. Nedelec and j. Planchard™, j. C.
Nedelec™, M. N. Le Roux' 'and G. C. Hsiao and W. L. Wendland”, Unfortu-
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nately, Fichera’s method cannot be generalized to boundary conditions other than
those of the Dirichlet type.

In 1978, Feng Kang® proposed the canonical boundary finite-element method
by the canonical boundary reduction which faithfully preserves the essential -char-
acteristics of the original problems including the self-adjointness. In this direction,
a series of results have been presented by Feng Kang and Yu Dehao®, In the
procedure of canonical boundary reduction, the Green function of the original
equation with the Dirichlet boundary condition is used, while the Green function
could not be obtained for a general domain. Hence up to now the canonical boun-
dary finite-element method for general domains has still been an open question.

In this paper, the double layer theory is applied to the Neumann problem of
elliptic differential equations and elliptic boundary value problems are reduced to
boundary integro-differential equations preserving the self-adjointness of original
problems. On the basis of boundary integro-differential equations,a new boundary
finite-element method is presented, which will be called I-D boundary finite-element
method below. Besides, error estimates of I-D boundary finite-element approxima-
tions are also given.

Let T be a bounded simple closed curve in R?, T is sufficiently smooth. Sup-
pose @ is the bounded domain with boundary I' and &, is the unbounded domain
with boundary T. We consider the following Neumann problems of the Laplace
equation and the Helmholtz equation:

Ay =0, in Q,

Ou ' _ (1.1)
{an ir £

{Au =0, 1n .,

Ou \ =g, u is bounded, when |x| — 4 0, (1.2)
On~ T

—Au+u=20, in Q,

_all _ (1.3)
{an T £

Ou
on~

(1.4)

{—Au+z¢=0, in @,

=g, #u—>0, when x| — + o0,
r

where 7 and n~ denote the unit outward normal vectors on I' for domains £ and
0O, respectively. g€ H'%(T) is a given function. As usual, H*(T') and H"(Q) stand
for Sobolev spaces, o and m are two real numbers. We know that there exists a
unique week solution for the boundary value problem (1.3) or (1.4), For problems
(1.1) and (1.2), the following condition is required

L ¢(x)ds, = 0, (15)

Under the condition (1.5), problem (1.1) (or (1.2)) has a unique weak solution
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apart from a difference of a constant. A new method of boundary reduction will

be presented in the following section.

II. A New Merugop orF Bounpary Repucrion

To begin with, we consider the problem (1.1), Let

u(y) = S o(x) -2 log lx — ylds,, Vy€e@ (2.1)

r On,
be the solution of the problem (1.1), p(s) being an undetermined function on T,
ne = (nL, n2) refers to the unit outward normal vector at point x€T, For every

y € Q and an arbitrary unit vector n, = (n}, #1), we have

M:j O loglx— ylds,, VyeQ 2.2
On, r o (%) Ony, On, og [+ vidses Vs ) 22)

The crucial point of this new method of boundary reduction is the following

lemma.
Lemma 2.1. For every x =y, the following equality holds

O og |x—y] = —

, log | x — ¥{5 2.3
Bn, O, br, 6z, =T (2:3)

where T, = (— nl, n}) is a unit vector perpendicular to ny,, and T, = (— nk, n})

represents the unit tangent vector at point x €T,

Proof. Let x = (x5 %;)5 ¥ = (¥15 ¥2)> 17 = 17" — 3l

H = log |x — y| =§1og{(xl— 3+ (n— 1)

Some computations yield

O’H — (xp = 9) = (52— 9,)° s

0y16x1 r4

oH — oH _— 202y — y)(m — yz),
09,0z, 0y,0x, r

&°H I (x, — yl)z + (2, — yz)z .
0y,0x, 7t ’

then we have

O°H O*H '
n

*#H -6_3)16:‘1 0y,0x,
Oy
On, On, O’H 0*H ,
8y,0%,  0v,0%,/ \"%/
O’H O’'H —
= —~(—n} ny) Opde,  By0s,
o'H oO’H .
L]

ayzé?l a}’za—g
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- _OH_
Or, Ot,
Q. E. D
Substituting (2.3) into (2.2) and using integration by parts, we obtain
%) 0 [ Ji)logle — mldses Vi€ O, (24)
a”}'o aTYO < T

where o (x) =d’;¥ and S, is the arc-length along the boundary I, For every

X

y€T, we take n, = n,, n, indicating the outward unit normal vector at point y €T
and let y, go to y. Then we obtain

)& _[rpoc)loglx y1dS., VyerT. (2.5)

From the boundary condition of the problem (1.1), we obtain the following boun-

dary integro-differential equation, which preserves the self-adjointness of the orig-
inal problem:

d
ds

| '(e)log | v — 3145, = g(x)s V€T, (26)

y v

Similarly, let

v = | o) 2

5 log |x — y|dS,, VyeQ (2.7)

be the solution of the problem (1.2), where p(x) is an undetermined function on
I'. From Lemma 2.1, we obtain

ouly), _ _ 4 , _
B It s, Srp(x)loglx yldsS.,. (2.8)

Moreover, the problem (1.2) can be reduced to the following boundary integro-
differential equation:

d‘; L p'(x)log |x — y[dS, = — g(y), Vye€rl, (2.9)

We now proceed to discuss the problems (1.3) and (1.4)., The fundamental
solution of Eq. — Au + # =10 1is the modified Bessel function of zero order
Ko(1x — y!). There is the expansion nearby » =0

Ky (#) = Z a,r" log—l- + Z bor?"y ay =1,
n=0 r n=1
At infinity, we have

= fE e
v

and lim K,(r) = 0. K,(r) satisfies the following differential equation

ro+o
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PK(r) 1 dKe(r)

o . e K(r)=10, r#0, (2.10)
Let
i) = |G 2 Ko(lx = 31)dses Vye o (211)
My

be the solution of the problem (1.3), where function p(x) will be determined
below. For every y€ Q and the unit vector n, = (n}, #5), we have

Bu,(y) =j p(x) — 2 Ky(1x — y1)dS,, Vyeo. (212)
n, r On, On,

. *
For the derivative ——
n,On,

Ky(|x — y|), we have

Lemma 2.2. Tke following equality holds

OKx =) _ @K =3D) _ korn e
On,On, or,0r, Ko(lx — y[)cos (ne, m,),
Ve, (2.13)

where T, = (— n%, n}) and v, = (— ni, ny).

Proof. Some computations yield

IK(Jx — v]) - (xrr —9,)? fi»zKo(") . (x2 — y2)* dKy(r)
0y,0x, r? dr? 7 dr
K, (lx —y) — FKo(lx — y1) _ G — ) —3) 2K (r)

Ay, 0x, Oy Ox, r dr?
+ (xr — y)(xs — 33) dlgo_(_72,
r’ dr
FK( 1x — V‘ ) - '(Xz — ) &K (r) . €2 —ggﬂ_)j dKy(r)
0y,0x, r’ dr’ r? dr

Eq. (2.10) leads to

PR x —y) |, FK(lx—y))
6y16x1 a%axz

= —K,(|x —yl). (2.14)
On the other hand, we have

ang(]x—)") — alKo(‘x—')") nin‘ azKo(lx'—y\\) 1,2

- + ——
On,On, 0y.0x, ’ 0y,0x, Tty
OK,(Jx — y1) 0K, (1x — y}) '

4 L2 T Y ) e TR = YI) e (55
Oyon, yom, e (213)

FKy(|x —y]) — PK,(lx —yl) nind — FK(lx—y]) ninl

xPy = xTty

or,or, 0y,0x, 0y,0x,

— PK(Jx —y[) ninl + OK,(|x —yl1) nind,

2.16
0y,0x, 0y,0x, ( )
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Combining (2.15), (2.16) and (2.14), we obtain

azKo(\x-—yi) alKo(\x'—)"D _ 1,1 2,2
A = — K,(|x — ninl 4+ nin
O, 0m B, 075 o{lx = 1) (mimy v

= — Ko(|x — y])cos (ns5 7).

This is the conclusion of Lemma 2.2,

Q. E. D
Substituting (2.13) into (2.12) and integrating by parts, we obtain
Buy) — O { (K| — 3])dSs
anh ari'o“r
— [, e = 50l ) cos (es m)dS:s (217)

Yy, € Q and unit vector ny, = (nyys nh).

For every y€T, n, denotes the outward unit normal vector at point y, If ny =
ny and y, goes to ¥ in (2.17), then we have

ouy), _ _@ , _
On, ir 4s, Sr"('@KO(‘x y1)dS.

—jrp<x>Ku<1x—y\>cos<nx,mds,, Vyer.,  (2.18)

By the boundary condition in the problem (1.3), we acquire the following integro-
differential equation to determine function e(x);

i o (DHK(lx — y})dS, — Lp(x)Ko(lx — y1)cos(ny, n,)dS,

ds, Ir
= g(y), Vyer. (2.19)

Similarly, let
u,(y) = EI‘ P(x) ai Ko(hx - yl)dsxo VyeQ, (2-20)

be the solution of the problem (1.4) with function p(x) to be determined. It is
easy to check that u,(y) goes to zero when |y| goes to infinity. We find

Ouy (9 d S ,
SR = K — as,
Bn- It as, rP("’) o | x ap;
.
+ jr p(#)Ky(|x — y|)cos(ns5 ny)dS., Vy€T. (2.21)

Hence the problem (1.4) is reduced to the following boundary integro-differential
equation

d S p,(x>K0(lx—yl)de - 5 P(x>Ko(\x—yDCOS(ﬂx: ny)dsx

as, /r r

= —g(y), Vye€r, (2.22)
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III. Bounpary InTEGrO-DirrerentiaL Ea. (2.6)
For every g€ H‘%(T) satisfying the condition (1.5), the problem (2.6) is equiv-
alent to the following variational problem:
Find p(x) € H%(T) such that
et ) = (63 ), V€ HED, G

where

ior @) =— | | 0 5 log |+ — ] 45.4S,,

(- ) = | eGIp(as,.
The bilinear form a(p, @) has been discussed in detail by G. C. Hsiao and W. L.
Wendland™, The main results in [7] are the following
Lemma 3.1.

(i) a(p, @) is a bounded bilinear form on H%(F) X H%(F), namely, there exists
a constant M =0 such that

laCos @) < MIegrlle -2 Voo @€ HED). (3.2)

(ii) Suppose thas diam Q:= the diameser of Q <1, then there is a constant
vy => 0 such that

a(p> 0) = l¢| 23 Vo€ HE(D). (3.3)
Let
Ny = {p€ HE(I), a(p, p) =0}

By the inequality (3.3), we know that the dimensionality of null space N, is one.
Obviously, p = 1€ N,, From the Fredholm alternative theorem, we have

Theorem 3.1. (1.5) is the necessary and sufficient condition for the existence of
the solution of the variational problem (3.1).

Now let us introduce space
Vo= {96 HE(T), Sr p(x)dS, = 0},

V, being a subspace of H%(T) Moreover the norm |lpllz,r and the semi-norm

lo'll-z,r are equivalent in space V,,  Let lollv, = llo'll-z,r. Consider the following

variational problem:
{Find p€ V, such that
a(ps @) = (g, @) YoV,

By Lemma 3.1 and the Lax-Milgram Theorem, we have the following result.

(3.4)

Theorem 3.2. The variational problem (3.4) has a wunique solution p,€ V,,
and
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el < 2l (35)

Under the condition (1.5), p, is a solution of the problem (3.1) and p = p, +
C are the solutions of the problem (3.1) for every constant C.

The remainder of this section is devoted to finite element approximation of
the problem (3.4).

Suppose V# is a finite dimensional subspace of V,, ~ Consider the following
approximate problem:
Find p, € V¥ such that
{ e ) (3.6)
a(P};: (Ph) = (g: (Ph)a V(Phe Vo-
We propose

Theorem 3.3. The variational problem (3.6) has a unique solution py, and the
following abstract error estimate holds

los — oallr, <X inf oy — wallv,e (3.7)
Vo og,ev]

This conclusion follows immediately from the Lax-Milgram Theorem and Cea

Lemmal?,

IV. Bounpary InTEGRO-DiererenTIAL Eq. (2.19)

For every g€ H'%(T), the problem (2.19) is equivalent to the following varia-

tional problem:

{Find o(x) € H%(T) such that

s (4.1)
5(o> p) = — (g ¢)> Yo € H3(T),
where
bor ) = | | o/ @@ IK( 15— y])ds.ds,
[ pGre IR x = 31)cos (es m,)d5dS,. (4.2)

For bilinear form &(p, (), we have

Lemma 4.1. 4(p,¢) is a bounded bilinear form on H%(T) X H%(F), i.e. there
is a constant M > 0, such that

1
16Cos )| < Mlellzrlelzr, Yo, @€ HX D). . (4.3)
The proof is similar to that of Lemma 3.1(i) and is omitted here,

To prove the coerciveness of b(p, ), we define the linear operator K4
from HYX(T) to HY(T') as follows:

o=, p() S Kallx = 31)dS: = e (), Vot HE(T). (4.4)

On,
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O Ky(lx—yl) and ~2 Jog !

7y On, ‘x — yl
I' X T'. Hence the integral operator in (4.4) is completelv continuous and bounded.
For everv v € HY¥(T), consider

have the same singularity on

We know that

v = \I p(x) _(M%;—_yll dS, — mp(y). ' (4.5)

We know that the homogeneous integral equation

0K, ( .x _

y)
! dS, — n
o zp(y)

0= o0
ir
has a unique solution p = 0, By the Fredholm alternative theorem, we obtain that
for every v € H(I'), the problem (4.5) has a unique solution p€ HY*(T'), Hence
S H'(I') — HY(T') is a bijective mapping and is continuous. Then the Banach
Theorem implies the continuity of the inverse ¢ . HYY(T) — HY(T), which is
equivalent to the following fact: There is a constant » > 0 such that

« 1
S ellz,r = vlollyrs Vo€ HZ(T), (4.6)
Lemma 4.2. There exists a constant u > 0 such that
- 1
bles o) = ullel*y 1 Vo€ HE(T). (4.7)

Proof. Because space C®(I') is dense in H%(T), we only need to prove (4.7)
for p€ C™(T'), For every p€ C®(I'), let

ul(y)=\ p(x) 0 K,(lx — y|)dS, VYyegQ,
.r On,

w =\ o) L K(ix—yDas, vyeo.
ST On,

By the boundary behaviour of the double layers, we obtain

() p = ,L o(x) 0

p Ko(gx—}’i)d&—ﬂp(}’)E%m
On,

u (v = {I_ p(x) % K (lx — y])dS, + =p(y),

x

and
(W) —w:(y) r = — 2mp(y).
From (2.18) and (2.21), we know that
On, T Ony T

=2 | JK(x — yl)ds,
dS}. ’r

— | pleIKel I = 31 cos (05 1,)d5..

On the other hand, when |y| — + o0, we have
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u,(y) = 0<‘y112>,
auz(y)=o< 1 >,

By |yl
“5 = ()

An application of the Green formulation yields

HQ (Vu, - Vu, + u2)dy + “Q (Vuy, « Vu, + ui)dy

. - v

={ Ous 4 as, +j O, 43,
Jr On, T Ony
Ou,
= J— Sv = 2 5 .
_\F om, (uy — u,)dS, zb(p> p)

Hence we have
b(ps 0) = [luifio. (4.8)
2

From the trace theorem, we know that there is a constant C,>> 0 such that

luillyo = Ciflully,r = Cif| S0l 11. (4.9)
Combining the inequalities (4.8), (4.9) and (4.6), we admit that the inequality
24,2
(4.7) will immediately follow with p = -2,
L7

An application of the Lax-Milgram Theorem vyields

Theorem 4.1. For every g€ H“*(T), the variational problem (4.1) has a
unique solution p€ H(I'), and

ol

lellzr < —‘;f— lell_z,r. (4.10)

Now suppose V% is a finite dimensional subspace of HY/(I'), Consider the
following approximate problem
Find p; € V* such that
{ , (4.11)
b(pns i) = — (g5 @s)» Y eV,
The following theorem arises.

Theorem 4.2. The variational problem (4.11) has a wunique solution p,€V*,

and the following abstract error estimate holds

lo — osllzr < inf flo — @ullzrs (412)
K oepeV

where o is the solution of the problem (4.1),

This conclusion follows from the Lax-Milgram Theorem and the Cea Lemma.
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V. Numericar Examrere

Consider the following example:

Ou | _ (5.1)
On |1 &>
where
. | 2 x5 _ 1 1
Q—{(xl, x,) € R? ;—;—+;—<1, a=—, b——;—}
is an ellipse, the parametric equation of the boundary T is
Xy = 4cost
{ P A (0 <+ < 27) (5.2)
x, = bsiny
and
Ou!| abcos?t
P a4

\/azsinzt + b’cos?t

First of all, the boundary T is divided into eight segmental arcs by eight
nodes ay, s> @125 i5s drs @rs d255 a3, as shown in Fig. 1, The division is denoted by
partition 1. Then the partition is refined by dividing every segmental arcs into two
parts. We obtain the partition II consisting of 16 segmental arcs corresponding to
the nodes {4;,, i =2,4,6,8,---,32}. Refine it again, and then the final partition
III consists of 32 segmental arcs as shown in Fig. 1,

ur, vy and ugp denote the I-D boundary finite-element approximations of the
problem (5.1) corresponding to the partitions I, II and III and piecewise linear
boundary elements. « denotes the exact solution of the problem (5.1). We get
the values of uy, uyy, #yy; and « on the nodes {a;, i = 2,4,6,--+,321,
I
. U — Ur
The relative errors — x|

max |u(a;)]
1<

(K =1,II,Hl) are given in Fig. 2. This nu-

7 45 g,
a2 L oa,
ey
ay
a5
g
23

—./asz
&30

a

Fig. 1. Partitions [—IIL
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Table 1

Point 2 4 6 8 10 12

2y L81715 ¢ 107! 35171 % 1071 —0,10632 %X 107! —0.53024 X 10711 —0.91464 X 1072 L37701 X 107!
gy 10140 .44413 X 1071)—0.12611 X 107! —0.36246 X 1071[—0.12599 X 107" .44493 x 107!
L2t 10214 46949 X 1071 —0.82456 X 1072 —0.31109 %X 107}]—0,82459 X 1077 .46949 X 107
1 L10212 46875 X 1071—=0.83677 X 1072 —0.31250 X 1071 —0.83677 X 1077 L46875 X 1071
point 14 16 18 20 22 24

1] .84529 x 107" 12779 .84529 x 107! .37701 % 1071 |—0.91464 X 1072]—0.53024 X 107!
iy L10159 12524 L10159 .44493 % 107! {—0.12600 X 1077 —0.36246 X 107*
7y .10215 . 12501 L10215 46949 X 107! |—0.82465 X 107%|—0.31108 X 10°1
u 10212 12500 10212 L46875 %X 107! | —0.83677 X 107%]—0.31250 X 0t
Point 26 2% 30 32

1y —0.10652 X 107! L35171 X 1071 81716 %X 107° .12500

1y —0.12611 X 107° L44413 X 1078 .10140 .12500

. —0.82453 X 1072 ,46949 % 10 .10214 12500

7 —0.83677 X 1077 L46875 X 107! .10212 . 12500

% 100

W)l

Julu

u""xl

max
1€ iEH2

ay,
2z as “1e iy @yg 2P Qg 30

Fig. 2 Relative errors.

merical example shows the I-D boundary finite-element method is very effective.

I wish to express my sincere thanks to Prof. Feng Kang for his valuable dis-
cussions and to Li Xuefeng for helping me in making the numerical experiment.
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