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Abstract

Exterior boundary-value problems for the Helmholtz equation can be reduced to
boundary integral equations. It is known that the simplest of these fail to be uniquely
solvable at certain ‘irregular frequencies.’ For a single smooth scatterer, it is also known
that irregular frequencies can be eliminated by using a modified fundamental solution,
one that has additional singularities inside the scatterer. This approach is extended to
treat the three-dimensional exterior Neumann problem for any finite number of disjoint
smooth scatterers, using a fundamental solution that has additional singularities inside
every scatterer.
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1. Introduction

Exterior boundary-value problems for the Helmholtz equation,
(V2 +k%u =0,

can be reduced to boundary integral equations in various ways [2,8]. If the goal
is to obtain a Fredholm integral equation of the second kind, as is traditional,
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then there are two basic methods, known asititrect and direct methods.
Both methods use a fundamental solution, usually taken as the free-space Green’s
function; in three dimensions, this is

G(P, Q) = —expikR)/(2w R), (1)

whereR is the distance between the two pointsand Q.

Consider the exterior Neumann problem, where the normal derivativef
prescribed on the boundayy Then, in the indirect method, one starts with an
assumed representation foas a single-layer potential,

u<P>=/u<q)G<P,q)dsq, @

S

and then derives a Fredholm integral equation of the second kind for the source
densityuu(g), whereg € S. In the direct method, one starts with the Helmholtz
integral representation (obtained by applying Green’s theoremand G) and

then obtains a Fredholm integral equation of the second kind for the unknown
boundary values af.

Now, there is a well-known difficulty associated with the two methods sketched
above: they both lead to integral equations that are not uniquely solvablekfhen
coincides with an eigenvalue of the corresponding interior Dirichlet problem—
these are called thieregular valuesof k2, or theirregular frequencies

The indirect and direct methods can be modified in various ways so as to
eliminate irregular frequencies. The main ideas are: modify the fundamental
solution; modify the integral representation; combine two different integral
equations; or augment one integral equation with some constraints. For reviews of
such modifications, see [2, 83.6] or [14]. Here, we focus on the first of these ideas,
where the free-space Green'’s function is replaced by a different fundamental
solution. This idea was developed by Ursell [18,19], Jones [7] and Kleinman and
Roach [9,10].

For multiple-scattering problems, the bound&rg not connected: physically,
we may be interested in the scattering of waves by a collectia¥ obstacles.

The standard theory assumes implicitly that= 1, although much of it does
extend to multiple-scattering problems without difficulty. One exception to this is
the use of modified fundamental solutions for such problems. Nevertheless, we
shall obtain a Fredholm integral equation of the second kind which we prove is
alwaysuniquely solvable: irregular frequencies do not occur. This is an extension
to scattering byN three-dimensional obstacles of some work by Jones, Ursell,
Kleinman and Roach, cited above. We use a modified fundamental solution which
has additional singularities inside each scatterer. Our proof of unique solvability
makes essential use of the addition theorems for outgoing and regular spherical
wavefunctions.



644 P.A. Martin / J. Math. Anal. Appl. 275 (2002) 642—-656

2. Formulation

Suppose that we hav& bounded, simply connected scattereBs, i =
1,2,...,N. The boundary oB; is S;, assumed to be smooth. We define

N N
B=|JB and s=[]Js.
i=1 im1

so thatB is the collection of all the interiors of th&¥ scatterers and is all their
boundaries. The unbounded connected exterior is denotéd.by
We consider the following boundary-value problem.

Exterior Neumann Problem. Find a functioru(P) for P € Be, Where

(V2+k?u=0 inBe, ()

u satisfies the Sommerfeld radiation condition at infinity 4)
and

du/on=f onS§. (5)

Here, f(¢) is a given function, defined fog € S, and 9/dn denotes normal
differentiation in the direction fron§ towardsBe.

A standard argument [2, Theorem 3.13] using Rellich’s lemma shows that the
exterior Neumann problem has at most one solutiprz 0 on S implies that
u=0Iin Be.

The exterior Dirichlet problemis formulated in the same way, except (5) is
replaced byt = g on S, whereg(q) is a given function, defined far € S.

In what follows, we limit ourselves to the exterior Neumann problem.
However, our analysis can be adapted to the exterior Dirichlet problem.

3. Integral equations: indirect method

Let us look for a solution of the exterior Neumann problem in the form of a
single-layer potential; thus, we writg P) as (2) forP € Be, where the density
w is to be found. For any reasonahle (3) and (4) are satisfied. It remains to
satisfy the boundary condition (5). Imposing this, using the jump condition for
the single-layer potential, we obtain

d
u(p)+ / @5 G(p.q)dsy = f(), peS. (6)
p
S

If we can solve this integral equation far, we will have solved the exterior
Neumann problem fai.
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It turns out that (6) is uniquely solvable for, for any f, except wherk? is
an irregular value. At these irregular frequencies, the following boundary-value
problem has a non-trivial solution.

Interior Dirichlet Problem. Find a functiony(P) for P € B, where

(V2+k®y =0 inB, and ¥ =0 onS.

Let us denote the set of irregular values by $Y/(It is clear that

N
V() =[JIV sy, (7)
i=1
because we can obtain a non-trivial solution of the interior Dirichlet probler for
by takingy (P) to be an eigenfunction of the interior Dirichlet problem %y,
say, withy(P)=0forPe B;,i=1,2,...,N,i # j; see [3, Chapter VI, 81.3].

The fact (7) is unfortunate, because it means that, in general, thehetares
as many irregular frequencies as there are for a single scatterer. Thus, unless the
scatterers are identical, the integral equation will have many irregular values, a
countable set for each scatterer.

Note that the irregular values do not depend on the relative location or
orientation of the scatterers, merely on their shape.

The integral equation (6) is an example of mirect boundary integral
equation so called because the unknown density function does not have a clear
physical interpretation. For multiple-scattering problems, it has been used by
Isaacson [6], Sorensen [17] and Radlinski [15].

4. Integral equations based on Green'’s theorem: direct method

For the exterior Neumann problem, the integral representation obtained from
an application of Green’s theorem is

a
2M(P)Z/{G(P,Q)f(CI)—M(Q)aTG(P,CI)}dsq, P € Be. (8)
q

This formula gives: at P interms ofu(g), g € S. Tofindu(q), weletP — p € S,
and obtain

9
u(p)+/u(q)aTG(p,q)dsq=/G(p,q)f(q)dsq, peSs. 9
q
S S

This is another Fredholm integral equation of the second kind. As (9) is the
Hermitian adjoint of (6), it has the same irregular values, name{§JV
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The unknowru occurring in (9) has physical significance, and may even be
the desired physical quantity. For this reason, integral equations based on Green’s
theorem are often known aérect boundary integral equations

For multiple-scattering problems, direct boundary integral equations have
been used by several people, including Millar [13], Andreasen [1] and Seybert
et al. [16].

In what follows, we concentrate on the indirect method. Similar results can be
obtained for the direct method.

5. Modified fundamental solutions: one scatterer

We have described the standard indirect method in Section 3, using the free-
space Green'’s functio@. However, there is no need to u6e one may use

G1(P; Q) =G(P, Q)+ H(P; Q),

where H has the following properties: for evely € Be, H(P; Q) satisfies the
Helmholtz equation foall Q € Be, and the radiation condition with respect@g

H (P; Q) must have some singularitiest= Q for someQ < B. (If a functionv
satisfies the Helmholtz equation everywhere in space and the radiation condition,
one can prove that must vanish everywhere; for a proof, see [4, p. 317].)

So, let us modify the fundamental solution with specific choicesHoMe
do this first for one three-dimensional scattem®r=£ 1), so as to review what is
known.

Choose the origif® at a pointinB = By, the interior ofS = S1. Let B, denote
a ball of radiusp, centred aD, with B, C B. Letr p andry denote the position
vectors of P and Q, respectively, with respect t0. Then, we replace the free-
space Green’s functio@(P, Q) = G(rp,rg) by

14

G1(P.Q)=G(rp.ro) —2ik Y > (=) "amyy (rp)v; ™ (rg). (10)

{=0m=—¢

whereys;" is aradiating spherical wavefunction, defined by (A.1); notefifatr)
is singular atr = 0. The factord—2ik(—1)™} are inserted for later convenience
and also render the coefficienis, dimensionless. These coefficients will be cho-
sen later; for now, we merely impose the conditions that the infinite series in (10)
be uniformly convergent foP andQ outsideB,, and that it can be differentiated
twice, term by term.

So, we look for a solution of the exterior Neumann problem in the form

u(P) =/u(q)G1(P,q)dsq (11)
S
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whenceu(q) satisfies

9
w(p) +/u(q)aTG1(p, q)dsg=f(p), peSs. (12)
)4
S

The solvability of this integral equation is governed by the solvability of the
corresponding homogeneous equation, namely

9

n(p) +/u(q)aTG1(p, q)dsg =0, peS. (13)
P

S

Theorem 5.1.Suppose that the homogeneous integral equdti@ has a non-
trivial solution w(q). Then, the interior wavefunction

U(P)=/M(Q)G1(P,q)dsq, PeB, (14)
S
vanishes ors.

Proof [18, pp. 120, 123] DefineU (P) for P € Be by (14);0U /dn vanishes or§

by (13). The uniqueness theorem for the exterior Neumann problem then asserts
that U = 0 in Be. The result follows by noting thal/ is continuous across the
source distribution oS [2, Theorem 2.12]. O

If we can show that/ = 0 in B, it will follow that (13) has only the trivial
solution (becausg is proportional to the discontinuity iU /dn acrossS) and
hence that the inhomogeneous equation (12) is uniquely solvable fof .aryis
can be achieved with some restrictions on the coefficients
Theorem 5.2.Suppose that

1
>§ fort=0,1,2,...andm=—¢,...,¢, (15)

1
alm“ré

or

1
<§ for=0,1,2,...andm=—¢,...,¢. (16)

1
alm“ré

Then, every solution of the homogeneous integral equétidyis a solution of

9
w(p) +/M(Q)WG(P,6])dsq =0, peSs, (17)
p
S

which also satisfies

Apm = —2ik(~1)" f W@V (rg) dsy =0, (18)
S
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for=0,1,2,...andm=—¢,...,¢.

Proof. For P € B with P # O, we have
14

U(P)= / (@) G(P.q)dsg+ Y Y aimAwm¥y' (rp),

S =0m=—¢
wherey is a solution of (13). If we restricP to lie in B,, we can use the addition
theorem (bilinear expansion),
4

Grp,ro)==2iky Y (=1™jy rp)¥; " (ro), (19)

L=0m=—t
which is valid forrp < rg, to give
¢

o0
Urp)=Y_ > {Am¥ p) + ammAenyy (rp)},
{=0m=—¢
PeB, P#0. (20)
Here,t/}g” is a regular spherical wavefunction, defined by (A.1). Note that if we
can show (18), then we can infer from (20) tliat= 0 in B, and then, by analytic
continuation, inB.
Next, following Ursell [19] and Colton and Kress [2, Theorem 3.35], we

consider the integral

‘/ UaU UBU J
= — —U—)ds,
on on

where £2, denotes the spherical boundary of the bBjl C B and the overbar
denotes complex conjugation. Using Green’s theorem and Theorem 5.1, we see

that
U —dU
/( on 8n> y
S

We can also evaluatedirectly using the following lemma.

Lemma 5.3.Suppose thal/ (rp), P € B,, has an expansion
¢

Urp)=Y_ > {Am¥}"(rp) + Bemy{" (rp)}.

{=0m=—¢
Then

) 14

U  —oU 2i —
(0505 )as =55 2 3 (Bl el AwBin).

2, =0m=—¢
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Proof. Let

so thatl = [U, U]. Substituting forU gives

(U, U]:ZZ{AZMAL—M[&Z[’&Q/I] +35mfm[l//£"’1//£/]]}

t,m L.M

+20 MY > Ap Bru [P v,

tm L.M

As bothy/" andyM are regular wavefunctions iB,, [, /1= 0. Next,

(97 v = ko Lictkp) B o) — ko) o) [ v a2
2
= —i (kp) Se1.8mm
using the orthogonality of the spherical harmoni¢g over the unit sphere
2, (A.2), and the Wronskian for spherical Bessel functiopgw)y;, (w) —
Jn )y, (w) = w2, Similarly
[t v = —2i(kp) eL8mu.

and then the result follows. O

Thus, returning to the proof of Theorem 5.2, we find that

2 &
O=1==—3% > lAwml*{Reaen) +laenl?}, (21)
P {=0m=—¢
using Lemma 5.3 wittB,, = agm A Sinceay, satisfies the inequalities (15) or
(16), it follows that (21) can only be satisfiedAf,,, =0 for ¢ =0,1,2,... and
m=—{,..., L. Also, substituting (10) in (13) shows thatsatisfies (17). O

This completes our review of scattering by a single obstacle.

6. Modified fundamental solutions: several scatterers

Consider the exterior Neumann problem férthree-dimensional scatterers.
Choose an originD" € B,, the interior ofS,, and letr’, denote the position
vector of a point” with respect toO". Let B denote a ball of radius, centred
at 0"; we choose sufficiently small so thaB; C B, forn=1,2,..., N. Let
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Gu(P, Q):G("PJ'Q)

—ZlkZZ Z( D",y (r) vy (1), (22)

n=1(=0m=—¢

whereqay,, are constants. This fundamental solution is singular at every afigin
n=12,...,N (recallthaty;" (r',) is singular ai0"). Note that it is essential that
our fundamental solution has this property; if we chose a fundamental solution
that was not singular insidB;, say, then we could not eliminate those irregular
frequencies associated wish.

We look for a solution of our problem in the form (11), whence the source
densityu(g) satisfies the integral equation (12). Moreover, the same arguments
as before show that Theorem 5.1 is true (in the current notation).

Let us now investigate the solvability of the integral equation (12) and look
for an analogue of Theorem 5.2. Suppose th&}) is any solution of the
homogeneous integral equation (13). Consider the interior wavefungtia),
defined by (14), foiP € B/ and somej. We restrictP to lie in B{, C Bj, and find
that

N
)= ALY (D) + DD al, AL (), (23)

L,m n=1¢m

for P € B[{, where

Ar :—Zik(—l)’"/u(q)w_’"( rp)ds,. (24)
S
In order to use Lemma 5.3, we need the expansidn taf be in terms of functions
centred onO’/, that is we need the addition theorem for outgoing spherical
wavefunctions, (A.5). This gives the expansion

00 L ' )
=2 2 Su®)ini(rp).
L=0M=-L

wherer’, = =bV + r . This expansion is valid fo|rr | < ||, which is always

true in our appllcat|on Note thadt" is the position vector oD/ with respect
to 0", whenceb” = —b’/". The separation matrl)S’"M is defined by (A.6).
Hence, (23) becomes

N
=zw<r¢>{Azm+zzazMA S @)
Lm Z;l LM

+Y yy(r 2aj Al . Pe B. (25)

l,m
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Using Green’s theorem, Lemma 5.3 (fBg) and the fact thaU(r{;,) vanishes
onS;, we obtain

0= Z A7, |° +Re{aj, } 47, [°)

+ Rez ‘Aim Z Z ‘AleSl/E/Ilm (bnj)’ (26)
n=1 L M
n#j
where A}, =ay, A}, . EQ.(26)holdsforj =1,2,.

By comparison with the proof of Theorem 5. 2 we expect to be able to deduce
from (26) thatA”? = 0. To do this, we sum over and obtain

tm —
0= Z > Re(aj,)|},|* +Kn, 27)
j=1¢,m
where
N .
Kn=) D [ ALl + RGZZAM Z > A SH B
j=14m j=14¢,m Z#} LM
N
j= Zm
1 — X o
t3 Z DALY S ARSI @+ spMeim). (28)
j=1¢m n=1L M

n#j
But, from the definition ofSLe , (A.6), we can show that

SEE" B + i (=) = 257 @),

wheresﬁ"’, defined by (A.4), is the separation matrix that occurs in the addition

theorem for regular spherical wavefunctions:

U (r Z Z SeM @Yk (r)). (29)

L=0M=
Thus, (28) becomes

L ) SIEAES 9 2 3L

i=14,m =14¢,m
/ i= n#—/

=3 a4 S+ )

1¢,m
/ n#—/
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where
Cot =" ALSHM B, n
LM

and we have noted th&ty is real. Now, for complex quantitie$ andC, we have

AC+AC=|A+C]?— AP =|C? (30)
so that
Al 2 1 al i 2 i 2
K=Y AP = 5 3040, P+ et )t + K
j=1¢m n=1
n#j
where

ZZZ\A Cinl”

1¢,m n=1
] n#j

Further simplifications can be made because the separation rigfixs a
unitary matrix; explicitly, we have

Z Z I (B) S (b) = 8Leym-

A=0v=—21
(This can be proved by using (29) twice.) It follows that
2

Z!CZL =D AT n#d
L,m
whence
N
KN:(Z_N)ZZ’ Zm’ +KN
j=14¢,m

Thus, (27) becomes
i 12
0= ZZ|Am| Re( Zm) (N_2)|al{m| }+K;V’
j=1¢m
Hence, we can deduce thafm = 0 provided all the coefficients,fm are such that
, ;2
Re(a,,) — (N = 2], >0
Alternatively, if we use the identity

AC+AC=—|A—CPP+ A2+ |C?
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instead of (30), we obtain

N
- . -
0= > |A,["{Rela},,) + Nlaf, |} + K¥.
j=14¢,m

whereK}, < 0. Hence, we deduce thA;’fm = 0 provided that
Re(af,,) + Nlaj, |* <O

Summarising, we have proved the following result.

Theorem 6.1.Suppose that
Re(a], ) — (N =2)al >0 fore>0, jm|<tandj=12,...,N
or
Re(a], )+ Nlal, |7 <0 fore>0, Im|<eandj=12,...,N,
where N is the number of disjoint scatterers. Then, every solution of the
homogeneous integral equati¢t3)is a solution of(17) which also satisfies
Al =0 fore >0, m|<fandj=1,2,...,N,

tm

whereA/ is defined by24).

If the conditions or;,, are satisfied, this theorem implies unique solvability of
the integral equation (12), for all wavenumbemand for anyf . This is an elegant
theoretical result, because it yields solvability of the exterior Neumann problem
without introducing non-compact operators.

It is noteworthy that Theorem 6.1 reduces formally to Theorem 5.2 when
N=1.

When N = 2, we obtain uniqueness when aagn> > 0. This result was
obtained previously by Martin [11] in two dimensions. The results for more
scatterers)N > 2, are new; note that the conditions in Theorem 6.1 do depend
onN.

7. Discussion

Theorem 6.1 is convenient analytically, because it shows how to elimafiate
irregular frequencies. In actual computations, of course, the infinite summation
in (22) would have to be truncated. For a single scattenNee<(1), Jones [7]
showed that one could eliminate a finite number of irregular frequencies with
a truncated series in (10). It would be nice to have such a resulivfor 1.
However, our analysis does not extend readily to these cases. Previously [11], we
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examined the two-dimensional case with= 2, and found that we could prove

a partial generalization of Jones’s result: we used a finite number of additional
singularities inside one scatterer but an infinite number inside the other. Examples
were given [11] to show that it may be difficult to obtain a complete generalization
(no infinite series in (22)), even whevi = 2. As far as we know, this situation

has not changed.

Appendix A. Spherical wavefunctions

Let (r, 6, ¢) be spherical polar coordinates of a point with position veetor
Let 7 = (sind cosg, sind sing, cosd) so thatr = rr. Define

YN (r) = h, (kr)Y™(#) and P (r) = ju(kr) Y (P, (A1)

where j, is a spherical Bessel function argl = hf,l) is a spherical Hankel
function.Y," is a spherical harmonic, defined by
Y™ (#) = A™ P (cosf)e™?,

whereP)" is an associated Legendre function and the normalization constfints
are chosen so that we have the orthogonality relation

/ Y Y A2 = 808y (A.2)
2
here, $2 is the surface of the unit sphere= 1. A,;"(r) is aregular spherical
wavefunctiony (r) is anoutgoing spherical wavefunctioitis singular at = 0

and satisfies the Sommerfeld radiation condition.
Letro=r1+5b. Then

e¢]

Urr) =y > S bl (ra). (A.3)

v=0pu=—v
This is theaddition theorenfor regular spherical wavefunctions. The entries in
the separation matrix are given by
St () = dmi® T (=D P @G, m; v, s ), (A4)
q
whereg is a Gaunt coefficient, defined by

g(n,m;v,u;q)Z/Yé" Yyt ag.
2

The summation ovey is finite.
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For the outgoing spherical wavefunctions, we have

o Y

Yrra) =Y Y Spb)l(ry) (A.5)

v=0pu=—v
forry < b, and

Yrra) =Y Y Spb)yylr)

v=0pu=—v
for r1 > b, where
S (b) = Ami¥ " (= DF Y ity ()G (. mi v, — s q). (A.6)
q

These addition theorems were obtained in the 1950's. For references and
further information, see [5] and [12]. Note that the expansion (19)Gfas the
special case = 0 of (A.5).
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