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In this paper, the direct Trefftz method is applied to solve the free-vibration problem of a membrane.

In the direct Trefftz method, there exists no spurious eigenvalue. However, an ill-posed nature of
numerical instability encountered in the direct Trefftz method requires some treatments. The

Tikhonov’s regularization method and generalized singular-value decomposition method are used to
deal with such an ill-posed problem. Numerical results show the validity of the current approach.
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I. INTRODUCTION other approach proposed by De Mey is the regular formula-
_ _ _ tion. This method adopts a nonsingular auxiliary function to
~ The eigenproblem is encountered very often in both enconstruct constraint equations. Kim and K&hgsed the
gineering practice and academic research. In the design staggve-type base functions, one regular formulation in our
of a structure system, it is well known that the engineergpinjon, to analyze the free vibration of membranes. In their
should avoid having the structural eigenfrequencies coincidgaper’ the wave-type base functions, which are periodic
with the driving force frequency.n the linear theory of  glong each element and propagate into the domain of inter-
V|brat|on_ analy3|s, it is _known that the eigenvalues and COrest, were selected to construct the needed equations. They
requndlng e|.genfunct|ons are used to represent arbnraryoimed out that some incorrect answers might appear, and
functions, which means that they construct the operatofhey explained these phenomena as due to the incomplete-
spectrun? It is not surprising then that the eigenproblem ness of the basis functions. Later, Kaegal'? proposed
analysis bgcomes vitally important in tackling the wonderfulanother regular formulation using the so-called nondimen-
world of vibration. _ _ sional dynamic influence function. Simply speaking, their
For an arbitrarily shaped domain, the numerical methogyethod took the response at any point inside the domain of
sometimes is required in analysis because the analytical Ssterest as a linear combination of many nonsingular point
lution might not be available. To date, the finite elementgy rces |ocated at the selected boundary nodes. They
method (FEM) and the boundary element methOBEM)  (jaimed that their method worked very well, and no numeri-
have been attractive to both the academic and engineering instability behaviors were reported. Recently, Chen
fields Ibeca.use of their respective merits. Eigenproblemy 513 ysed the circular domain and the property of circu-
analysis using the boundary element method has been stuflys 1o theoretically examine the possibility of using the

ied for a long time. The complex-valued singular type aux-jmaginary dual BEM as a solution for the Helmholtz eigen-
iliary functions have been adoptédTo avoid complex-  hoplems. They reported that spurious eigensolutions also
valued computation, De Méyroposed two _alternatlves: the appear in the imaginary dual BEM; however, no numerical
real-part formulation and regular formulation. The real'partexamples were illustrated in their paper. Keioal 24 pointed
formulation basically adopts the real-part function of theOut that the ill-posed behavior should exist in the regular
complex-valued auxiliary functiorithe fundamental solu- BEM formulation. They also proposed a combination of the

tion) as the auxiléary.function. The multiple reciprocity Tixhonov's regularization method and generalized singular-
method(MR/BEM),” which treats the Helmholtz equation as \/51ye decomposition to treat such an ill-posed formulation.

a Pois;ons;s equation, has been devgloped for eigenprobleqq,q regular formulations Kucet al. proposed were the
analysis®~® Both the real-part formulation and MR/BEM re- imaginary-part dual BEM and the plane-wave method. Nev-

sult in the_8 spuriousg eigenvalues reported by mManygrheless, in Kuo's paper their methods failed when a multi-
researcher®:8 Yeih et al® proved that the real-part formula- ply connected domain problem was treated.

tion and MR/BEM are equivalent mathematically, and the' ° A qther nonsingular boundary-type approach is the
spurious eigenvalues encountered in both formulations stefy.q, method, which has been widely used to deal with
from lacking constraint equations contributed by the imagi-many types of problent& 17 and gained considerable popu-
nary part of the complex-valued fundamental solution. A”'Iarity in the BEM community® The boundary-type Trefftz
method basically employs a complete set of solutions satis-
dElectronic mail: cjr@sena.ntou.edu.tw fying the governing equation as the beginning step. To derive
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the boundary integral equation, either the reciprocity law
(which is similar to that used in the conventional BEBF
the weight residual method can be used. A main benefit of
the Trefftz method is that it does not involve singular inte-
grals because of the properties of its solution basis functions
(T-complete functions thus, it can be categorized into the
regular boundary element method. Since it can avoid the » X
difficulties with integration over singularities in the tradi-
tional BEM and often obtains more accurate results, various
formulations of the Trefftz method have been developed and
further applied to the engineering problems. Two important
review articles about the Trefftz methSdand its existing
formulation$® associated with comparisons with available
boundary-type solution procedures can be found. In general,
the formulations of the Trefftz method can be classified into
the indirect and direct ones. For the indirect Trefftz formula-
tion, the solutions of the problem are approximated by the
superposition of the T-complete functions satisfying the gov-
erning equation, while in the direct one, the T-complete func-
tions are taken as the weight function and the integral equa-
tions are derived from the governing equations. The
mathematical bases of them are fairly differéhalthough ‘ Y » X
the Trefftz method has been successfully used to solve many
problems, for the eigenproblem using the Helmholtz equa-
tion few attempt&-??’have been found in the literature, to the
authors’ best knowledge. The reason may come from the
ill-posed behavior nature of a regular formulation as Kuo
et al'* have indicated, and it leads to the inaccuracy of the (b)
numerical resultd® Most of the researchers have been study-
ing the indirect Trefftz formulations. As a counterpart of FIG. 1. (a) A simply connected domairib) A multiply connected domain of
the indirect Trefftz method, the direct Trefftz method is 98"US 1-
relatively new from its developing histof},and for some
problems it performs in a superior w&YBesides, in direct (V2+K)W(x)=0, xeQ: ©)
Trefftz method there exist no spurious eigenvalues for the ’ '
eigenproblem analysis, and it can deal with the multiply conyhen, by the reciprocity theorem one can have
nected domain problem within its own formulation.

Based on the advantages over the traditional BEM, in
this paper we will construct the direct Trefftz formulation to f W(x)
solve the free-vibration problem of a membrane. We prove '

that the direct Trefftz method has no spurious eigenvalues N .
. ; . o wheren denotes the out-normal direction at boundary point
but has an ill-posed nature of numerical instability. The

Tikhonov’s  regularization methéd and generalized )é'o;]—hEchSQ?%V%i%(Xavri?:fggfv\? ?X)t? eispg?w%lsg:] ;Lselii'/eA
singular-value decompositiéhare used to resolve such a P X ' ' g

problem. The direct Trefftz method can yield a solution for aenough bases to represent all the physical quantities. This

. . ; . omplete set is called the T-complete function set. In the
multiply connected domain. Numerical results are provide ; : )
S mathematical language, the T-complete function set provides
to show the validity of our proposed approach.

complete function bases to represent any physical field. For
example, a simply connected domain shown in Fig) and

Il. DERIVATION OF DIRECT TREFETZ FORMULATION having _the origin located inside the domain of interest, it is
convenient to have the T-complete set as

P

(a)

—P <

JW(X)
an

Au(x)
J

. areo, @

dF(x)zJ}u(x)

Consider a two-dimensional finite membraie en-
closed by the boundary, the governing equation for the {Jo(kr),Jn(kr)ycogme),J(kr)sin(ma)}
free-vibration problem is written as the Helmholtz equation,
ie., for m=1,2,3..., in whichd,, is the first kind of Bessel func-
tion of mth order,r is the distance from the origin to a
(VZ4K)u(0=0, xeQ, @ domain point, and is the angle between theaxis and the
where V2 is the Laplacian operatok is the wave number, radial vector from the origin to that domain point. For a

u(x) is the physical quantity at. multiply connected domain of genus(ile., a domain with
The direct Trefftz formulation is derived as follows. Let one holg¢ and locating the origin inside the hole as shown in
a field W(x) satisfying the Helmholtz equation, i.e., Fig. 1(b), the T-complete set is
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{Jo(kr),Yo(kr),Jm(kr)cogme),J,(kr)sin(mé),
Ym(kr)ycogma),Y (kr)sinimé)} m=1,2,3,...,

whereY,, is the second kind of Bessel functionmth order.
For a boundary value problemy,u+ B8:t=0, where
t(x)=[du(x)]/on, one can assign

for

u=pg1y, t=—-ayy, (4)
then substituting them into E@3) produces
IW(X)
f s W(X) + Br——| p(x)dT (x) =0. (5)
r

Changing the base functiond/;(x), and adopting con-
stant element implementation for boundary unknownene
can have the following linear algebraic equation:

{as[U]+ B[ TIH¥]=0, (6)
where the components of the matrices are represented as
Uijzfr W;(x)dT'(x), (7a)

i
~ &W,(X)
T”:jr on dI'(x), (7b)

j
in which T'; is thejth element on the boundary akid(x) is
theith base function.

B. Definition

Two sets of boundary conditions, a;(x)u(x)
+B1(X)t(X)=0 and ay(xX)u(x)+ B,(X)t(x)=0, where
a1(X), ax(X), B1(x), and B,(x) are given functions, are
said to be homogeneous, linearly independent boundary con-
ditions if and only if

de% ay(X)  B1(X) .
ay(X)  BaX)

for any x on the boundary.

C. Theorem 1

For the Helmholtz equation, given two systems having
homogeneous, linearly independent boundary conditions on
part of the boundary denoted Bs, it is impossible for both
systems to have the same eigensolution.

Theorem 1 supports the conclusion we mentioned
above. Theorem 1 also hints that if there exists an “eigenso-
lution” to make two systems have homogeneous, linearly
independent boundary conditions degenerated at the same
time, it must be the spurious eigensolution. Following this,
now let us give the proof.

D. Theorem 2

For the Helmholtz equation, given a boundary condition

There is something worth mentioning here; that is, theds a;u+ 8,t=0, the direct Trefftz formulatior, (k) /=0
direct Trefftz method will not have spurious eigensolutions.cannot have a spurious eigensolution.

To prove this, we need to take a look at Kuo's wotiCon-
sider the original problem having boundary conditiapu

+B4t=0 on the boundary; the corresponding influencing

matrix A4 is

A1=a10+,8ﬁ:. (83)

Let us pick another complementary problem with boundary

condition a;u+ B1t=0 on the boundary and

de{ ay B

a Bo

the influencing matridA, is

#0;

A2=a20+,82T. (8b)

These two systems cannot have the same eigensolution. T
is, at a specific wave numbér it is impossible to have the

same nontrivial boundary eigensoluti@r(x) for both sys-
tems. This theorem is proven in Kuo’s papéand we adopt
their results as follows for the readers’ convenience.

A. Lemma 1

Given that the governing equation is a Helmholtz equa-

tion, (V2+k?)u(x)=0, for a domainQ enclosed by the

boundanyl’, and that the overspecified homogeneous bound-

ary conditions areu(x)=0 andt(x)=0 for x on the sub-
boundaryl’,CT", there exists a unique solutiom(x) =0 for
xeQ+T.

520  J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002

E. Proof

Let us pick another system with a boundary condition as
a,u+ Bot=0 and

ay B
d
e% a B;

its corresponding eigenproblem is written As(k)#=0.
Further, we assume that there exists a specific wave number
k. such that a nontrivial solutiong(x), can satisfy
Ai(ky) =0 and As(k.) =0 simultaneously. This means
that #(x) is a spurious eigensolution by Theorem 1. Suppose
there aren constant elements on the boundary for both prob-
lems. Then, it can be said that the following linear system:

#0;

t ~ ~
1 _ a U+ BT
rﬂz znxn_[w]nxl CYZU'F,BZT [‘Jf]nxl
agl Bl U
Tl By . 7 2nxn[¢]nx1—0, 9

must be linear dependent whdrés ann by n identity ma-
trix. It can then be said that this is possible if and only if

%U
rank | ~
%

If nis very large and equal or unequal length element is
adopted, from Egq.7a and(7b), we can say that Eq10) is
equivalent to

<n. (10
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e

FIG. 2. (a) Numerical contamination exists by only per-
(@) k forming the SVD technique for the original systeth)
Numerical contamination exists by only performing the
SVD technique for the auxiliary system.

wn
Q
=
<
>
:e l
= IxI1o JE— :
k= Auxiliary problem: t=0 |
w2 | Kernel used: T ‘
. g
1x10™ i I |||'”| '
lxl0-21 1 I | I | I i | 1 l [
0 1 2 3 4 5 6
(b) k
L;Wi(x)) ill-posed behaviors while the nodésr elements increase.
Kuo et al1* explained the reason and proposed a method to
ran LjM <n (11) fix it. Here, we simply introduce the method Ket al. sug-
an; gested since we will use the same technique later on.
whereL; is the element length of thigh element. The above To treat the ill-posed behaviors, Kuet al** proposed

equation is impossible to be achieved due to the linearlysing the Tikhonov’s regularization method and generalized

independent behavior of the base functidégx). Actually, singular-value decomposition. Now, let us briefly introduce
their idea. From Theorem 1, it can be seen that the spurious

LiWi(xj) eigensolution will appear in two systems having homoge-
ran IWi(X)) | | =n. neous, linearly independent boundary conditions simulta-
L an; neously. That is, we have a system B8] xn¥nx1

) . =[As]nxn?¥nx1=0. Since both problems can have common

This then leads to a contradiction and completes the prOOf'spurious eigensolutions, we can intuitively decompose both
matrices into the following form:
Ill. REGULARIZATION AND GENERALIZED
SINGULAR-VALUE DECOMPOSITION METHODS TO PW;x=PW,x=0,
DEAL WITH THE ILL-POSED PROBLEM wherePW;=A; andPW,=A,. Then, spurious eigenvalues
The Trefftz method adopts nonsingular base functionswill result in the rank deficiency of matriR, and true eigen-

and thus can be categorized into the regular BEMvalues will result in the rank deficiency of mati, for the
formulations* However, the regular formulation leads to the original problem. When the spurious eigenvalues are encoun-
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0 1 2 3 4 5 6 FIG. 3. (@) Numerical contamination still exists after
(a) k using Tikhonov's regularization method and the SVD
technique for the original systenib) Numerical con-
1x10" tamination still exists after using the Tikhonov's regu-
larization method and the SVD technique for the auxil-
iary system.
7]
Q
=
<
>
8
=)
an
.5
5} ) 5
' Auxiliary problem: t=0 |
|Kernel used: T ‘
1x10° ] | 1 | i | 1 | 1 | 1
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(b) k

tered, basically we want to extract them by finding maRix  with singular values allocated in the diagonal line. When one
That is, to perform a numerical operation of L'Hospital rule of the singular values is numerically very small at a specific
on an indefinite form of 0/0. The above-mentioned techniquavave number, it can be said that the system has degenerated,
can be achieved using the QR factorization, which is the firste., that the wave number is an eigenvalue. However, when a
step of the generalized singular-value decomposition. nonsingular BEM is adopted, there exist many numerical
Remember that the serious problem we encounter is ndtny values in the singular values, which are not true zeros.
spurious eigensolution but numerical instability of this algo-This phenomenon becomes very severe when the number of
rithm. To treat this, we will add some small quantities into elements increases and/or a direct eigenvalue search is used
the matrices\; andA, to make the numerically tiny singular at a low wave number. Now, let us add two small quantities
values occurring in both matrices become “numerical spuri-n the matrices to construct new influencing matrices as
ous eigenvalues” such that the QR factorization can extract

them. LetA; and A, have the following singular value de- Ai=P(3;+eql)V], (133
compositions: .
A,=P +e,1)VE 1
A1:PE1V,1< , (12a) 2 (22 €2 ) 2 ( 3b)

whereg; is the small value added to systenThe choice of

g; is dependent on the problem itself; however, if they are
whereV; is the right unitary matrix of syster) the super- larger than the unreasonable tiny values of singular values in
script “*” means take the transpose and complex conjugate¢he original two systems, but still small enough not to over-
of the matrix, and¥; is a singular value matrix of systeimm coat the true eigenvalue, one can then successfully extract

A,=PX,V37, (12b
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() k using Tikhonov’s regularization method, QR factoriza-
tion, and the SVD technique for the original systéh).
o Numerical contamination is eliminated by using
1x10 e N = Tikhonov's regularization method, QR factorization,
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the contaminated tiny value. If one takes the QR factorizatem two will not be close to zero. Using this method, we can
tion of A; andA,, the unreasonable ones can be extractedsuccessfully treat the ill-posed behaviors; numerical ex-
The idea can be seen in Fig. 2—Fig. 4. Before treatmentdmples will be given in the next section.

shown in Fig. 2, at low wave numbers some singular values

are very small for both systems. However, when the mini!V- NUMERICAL EXAMPLES

mum singular value of system one occurs for “mode shapey. Example 1

p” (or pth singular vector, the corresponding singular value
of system two for the sampth singular vector may not be - e
the smallest one in system two. After QR factorization, thisPeundary conditionu=0, is given.

singular value remains the smallest in system one such that Filty-One constant elements are used, and the Neumann
we still cannot distinguish if it is an eigenvalue, as shown incor_'d'tIon pr_oblemtl=0, IS ch(_)serj as the auxiliary problem.
Fig. 3. After treatment as shown in Fig. 4, the contaminateou_s'ng the Tikhonov's regu_lz_irlzan(_)n method and generalized
singular values for both systems are elevated. The QR fagingular-value decompqsmon, elggnyalues are founq suc-
torization method extracts such singular values out an@€SSfully, @s shown in Fig. 5. In this figure, the value in the
changes the order of the singular values. Adding such a smaffacket is the analytical solution.

value (for instance,g =10"* in Fig. 4) in the singular value
cannot change the facts of true degenerated singular valu
That is, at the true eigenvalue, the singular value of system A circular domain with radiusR,=1.0 and the Neu-
one should approach zero but its corresponding part in sysnann boundary conditiori=0, is given.

A circular domain with radiuf,= 1.0 and the Dirichlet

. Example 2
g
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FIG. 5. Eigenvalues searching for the Dirichlet bound-
ary condition of a unit circle by using the direct Trefftz
method.

FIG. 6. Eigenvalues searching for the Neumann bound-
ary condition of a unit circle by using the direct Trefftz
method.

FIG. 7. Eigenvalues searching for the Neumann bound-
ary condition of a square by using the direct Trefftz
method with an auxiliary systeno,=0.
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In this example, we can see that our method is valid forE. Example 5
all kinds of boundary conditions. Again, 51 constant ele-

ments are used and the Dirichlet condition problem,0, is ith | _ he i .
used as the auxiliary problem. Using the proposed method’ >Juare \.Nlt edg_e ength,=2.0, aqd_t € Inner poundary N
) d circle with a radius;=0.2. The origin of the circular hole

eigenvalues are successfully found and are very close to the . .
analytical values, as shown in Fig. 6. IS the geometric center of the whole domain. The boundary

condition is the Dirichlet conditiony=0.

In this example, no analytical solution is available. We
C. Example 3 compared our results with those obtained from the complex-
valued dual BEM. The auxiliary system is the Neumann

Neumann boundary condition=0, is prescribed problem,t=0. As shown in Fig. 10, numerical results ob-
In this example, a domai,n v;/ithout radial éymmetry istained from the direct Trefftz method are close to those ob-

illustrated. Eighty-one constant elements are used and ggined from the comple_x-valugd dugl BEM..The reason wr?y
Dirichlet boundary problemy=0, is chosen as the auxiliary 2 complgx-gual BEM is required is explained in Chang's
problem. It can be found in Fig. 7 that the numerical resultglissertatiorf. He explained that solving an eigenvalue prob-
match the analytical solutions very well. Ie_m of a_multlply conn_ected domain by the complex-va_lued
We have claimed that any problem having a Iinearlys'”gmar integral (_aquat!on or th(_a complex-valued hypersmgu-
independent boundary condition to the original problem car@r integral equation will result in an unreasonable numerical
be used as an auxiliary problem. In this example, we uséesonance. He named this kind of degeneracy of the direct
another auxiliary problem@+ 3t=0. The results are shown BEM the pseudofictitious eigenvalue. To treat this unreason-
in Fig. 8, and our approach works as expected. able degeneracy, a combined use of singular and hypersingu-
lar integral equations was suggested. For more detail, readers
can refer to Chang’s dissertatiéh.

A multiply connected domain with the outer boundary is

A square membrane with edge lendth=1.0 and the

D. Example 4

An annular region with the outer radid®,=1.0 and
inner radiusk;=0.2, and a Dirichlet boundary condition,
=0, is prescribed on the boundary.

The domain is a multiply connected domain, which F- Example 6
shows the superiority of the current approach over Kuo's A circular domain with radiuR,= 1.0 and the Robin-
method* Their methods were proven to fail when a multiply tyne houndary condition, 2+ 3t=0, is given on the bound-
connected domain is treated. However, the direct Trefftzary_ ’ ’
method can easily overcome this problem by putting the ori- ~ e analytical values for this case can be obtained by

gin inside the hole. In this example, 51 elements are used fQEsing the true eigenequation ¥s2J, (kR,)+ 33’ (kR,)
the outer and inner boundaries. The auxiliary problem is the_ 5 "\, this case. 31 elements and 3;' bases arén used corre-

Neurgna?n p(;oblemt=?.”AsTihown Iin. Filg. SI) eigenvakljueg spondingly. When the Tikhonov’s regularization method and
can be found successully. The analytical values are o talneé{;neralized singular-value decomposition are adopted, eigen-

using the eigenequatioh values are found successfully and numerical results match
[Im(KRy) Y m(KR) =Y m(kRy)In(kR)]1=0. analytical solutions very well, as shown in Fig. 11.
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