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In this paper, the direct Trefftz method is applied to solve the free-vibration problem of a membrane.
In the direct Trefftz method, there exists no spurious eigenvalue. However, an ill-posed nature of
numerical instability encountered in the direct Trefftz method requires some treatments. The
Tikhonov’s regularization method and generalized singular-value decomposition method are used to
deal with such an ill-posed problem. Numerical results show the validity of the current approach.
© 2002 Acoustical Society of America.@DOI: 10.1121/1.1494992#
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I. INTRODUCTION

The eigenproblem is encountered very often in both
gineering practice and academic research. In the design s
of a structure system, it is well known that the engine
should avoid having the structural eigenfrequencies coinc
with the driving force frequency.1 In the linear theory of
vibration analysis, it is known that the eigenvalues and c
responding eigenfunctions are used to represent arbit
functions, which means that they construct the opera
spectrum.2 It is not surprising then that the eigenproble
analysis becomes vitally important in tackling the wonder
world of vibration.

For an arbitrarily shaped domain, the numerical meth
sometimes is required in analysis because the analytica
lution might not be available. To date, the finite eleme
method ~FEM! and the boundary element method~BEM!
have been attractive to both the academic and enginee
fields because of their respective merits. Eigenprob
analysis using the boundary element method has been
ied for a long time. The complex-valued singular type au
iliary functions have been adopted.3 To avoid complex-
valued computation, De Mey4 proposed two alternatives: th
real-part formulation and regular formulation. The real-p
formulation basically adopts the real-part function of t
complex-valued auxiliary function~the fundamental solu
tion! as the auxiliary function. The multiple reciprocit
method~MR/BEM!,5 which treats the Helmholtz equation a
a Poisson’s equation, has been developed for eigenprob
analysis.6–9 Both the real-part formulation and MR/BEM re
sult in the spurious eigenvalues reported by ma
researchers.6–8 Yeih et al.9 proved that the real-part formula
tion and MR/BEM are equivalent mathematically, and t
spurious eigenvalues encountered in both formulations s
from lacking constraint equations contributed by the ima
nary part of the complex-valued fundamental solution. A

a!Electronic mail: cjr@sena.ntou.edu.tw
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other approach proposed by De Mey is the regular formu
tion. This method adopts a nonsingular auxiliary function
construct constraint equations. Kim and Kang10 used the
wave-type base functions, one regular formulation in o
opinion, to analyze the free vibration of membranes. In th
paper, the wave-type base functions, which are perio
along each element and propagate into the domain of in
est, were selected to construct the needed equations.
pointed out that some incorrect answers might appear,
they explained these phenomena as due to the incomp
ness of the basis functions. Later, Kanget al.11,12 proposed
another regular formulation using the so-called nondim
sional dynamic influence function. Simply speaking, th
method took the response at any point inside the domai
interest as a linear combination of many nonsingular po
sources located at the selected boundary nodes. T
claimed that their method worked very well, and no nume
cal instability behaviors were reported. Recently, Ch
et al.13 used the circular domain and the property of circ
lants to theoretically examine the possibility of using t
imaginary dual BEM as a solution for the Helmholtz eige
problems. They reported that spurious eigensolutions a
appear in the imaginary dual BEM; however, no numeri
examples were illustrated in their paper. Kuoet al.14 pointed
out that the ill-posed behavior should exist in the regu
BEM formulation. They also proposed a combination of t
Tikhonov’s regularization method and generalized singu
value decomposition to treat such an ill-posed formulati
The regular formulations Kuoet al. proposed were the
imaginary-part dual BEM and the plane-wave method. N
ertheless, in Kuo’s paper their methods failed when a mu
ply connected domain problem was treated.

Another nonsingular boundary-type approach is
Trefftz method, which has been widely used to deal w
many types of problems15–17 and gained considerable popu
larity in the BEM community.18 The boundary-type Trefftz
method basically employs a complete set of solutions sa
fying the governing equation as the beginning step. To de
112(2)/518/10/$19.00 © 2002 Acoustical Society of America
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the boundary integral equation, either the reciprocity l
~which is similar to that used in the conventional BEM! or
the weight residual method can be used. A main benefi
the Trefftz method is that it does not involve singular in
grals because of the properties of its solution basis funct
~T-complete functions!; thus, it can be categorized into th
regular boundary element method. Since it can avoid
difficulties with integration over singularities in the trad
tional BEM and often obtains more accurate results, vari
formulations of the Trefftz method have been developed
further applied to the engineering problems. Two import
review articles about the Trefftz method19 and its existing
formulations20 associated with comparisons with availab
boundary-type solution procedures can be found. In gene
the formulations of the Trefftz method can be classified i
the indirect and direct ones. For the indirect Trefftz formu
tion, the solutions of the problem are approximated by
superposition of the T-complete functions satisfying the g
erning equation, while in the direct one, the T-complete fu
tions are taken as the weight function and the integral eq
tions are derived from the governing equations. T
mathematical bases of them are fairly different.20 Although
the Trefftz method has been successfully used to solve m
problems, for the eigenproblem using the Helmholtz eq
tion few attempts21,22have been found in the literature, to th
authors’ best knowledge. The reason may come from
ill-posed behavior nature of a regular formulation as K
et al.14 have indicated, and it leads to the inaccuracy of
numerical results.23 Most of the researchers have been stu
ing the indirect Trefftz formulations. As a counterpart
the indirect Trefftz method, the direct Trefftz method
relatively new from its developing history,20 and for some
problems it performs in a superior way.24 Besides, in direct
Trefftz method there exist no spurious eigenvalues for
eigenproblem analysis, and it can deal with the multiply co
nected domain problem within its own formulation.

Based on the advantages over the traditional BEM
this paper we will construct the direct Trefftz formulation
solve the free-vibration problem of a membrane. We pro
that the direct Trefftz method has no spurious eigenval
but has an ill-posed nature of numerical instability. T
Tikhonov’s regularization method25 and generalized
singular-value decomposition26 are used to resolve such
problem. The direct Trefftz method can yield a solution fo
multiply connected domain. Numerical results are provid
to show the validity of our proposed approach.

II. DERIVATION OF DIRECT TREFFTZ FORMULATION

Consider a two-dimensional finite membraneV en-
closed by the boundaryG, the governing equation for th
free-vibration problem is written as the Helmholtz equatio
i.e.,

~¹21k2!u~x!50, xPV, ~1!

where¹2 is the Laplacian operator,k is the wave number
u(x) is the physical quantity atx.

The direct Trefftz formulation is derived as follows. Le
a field W(x) satisfying the Helmholtz equation, i.e.,
J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
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~¹21k2!W~x!50, xPV; ~2!

then, by the reciprocity theorem one can have

E
G
W~x!

]u~x!

]n
dG~x!5E

G
u~x!

]W~x!

]n
dG~x!, ~3!

wheren denotes the out-normal direction at boundary po
x. The choice ofW(x) depends on the problem itself. A
complete set ofW(x), written as$Wi(x)%, is chosen to give
enough bases to represent all the physical quantities.
complete set is called the T-complete function set. In
mathematical language, the T-complete function set provi
complete function bases to represent any physical field.
example, a simply connected domain shown in Fig. 1~a! and
having the origin located inside the domain of interest, it
convenient to have the T-complete set as

$J0~kr !,Jm~kr !cos~mu!,Jm~kr !sin~mu!%

for m51,2,3..., in whichJm is the first kind of Bessel func-
tion of mth order, r is the distance from the origin to
domain point, andu is the angle between thex axis and the
radial vector from the origin to that domain point. For
multiply connected domain of genus 1~i.e., a domain with
one hole! and locating the origin inside the hole as shown
Fig. 1~b!, the T-complete set is

FIG. 1. ~a! A simply connected domain.~b! A multiply connected domain of
genus 1.
519Chang et al.: Direct Trefftz method to free vibration
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$J0~kr !,Y0~kr !,Jm~kr !cos~mu!,Jm~kr !sin~mu!,

Ym~kr !cos~mu!,Ym~kr !sin~mu!% for m51,2,3,...,

whereYm is the second kind of Bessel function ofmth order.
For a boundary value problem,a1u1b1t50, where

t(x)[@]u(x)#/]n, one can assign

u5b1c, t52a1c, ~4!

then substituting them into Eq.~3! produces

E
G
Fa1W~x!1b1

]W~x!

]n Gc~x!dG~x!50. ~5!

Changing the base functions,Wi(x), and adopting con-
stant element implementation for boundary unknownsc, one
can have the following linear algebraic equation:

$a1@Ũ#1b1@ T̃#%@c#50, ~6!

where the components of the matrices are represented a

Ũ i j [E
G j

Wi~x!dG~x!, ~7a!

T̃i j [E
G j

]Wi~x!

]n
dG~x!, ~7b!

in which G j is the j th element on the boundary andWi(x) is
the i th base function.

There is something worth mentioning here; that is,
direct Trefftz method will not have spurious eigensolution
To prove this, we need to take a look at Kuo’s work.14 Con-
sider the original problem having boundary conditiona1u
1b1t50 on the boundary; the corresponding influenci
matrix A1 is

A15a1Ũ1b1T̃. ~8a!

Let us pick another complementary problem with bound
conditiona1u1b1t50 on the boundary and

detIa1 b1

a2 b2
IÞ0;

the influencing matrixA2 is

A25a2Ũ1b2T̃. ~8b!

These two systems cannot have the same eigensolution.
is, at a specific wave numberk, it is impossible to have the
same nontrivial boundary eigensolutionc(x) for both sys-
tems. This theorem is proven in Kuo’s paper,14 and we adopt
their results as follows for the readers’ convenience.

A. Lemma 1

Given that the governing equation is a Helmholtz eq
tion, (¹21k2)u(x)50, for a domainV enclosed by the
boundaryG, and that the overspecified homogeneous bou
ary conditions areu(x)50 and t(x)50 for x on the sub-
boundaryG1,G, there exists a unique solution,u(x)50 for
xPV1G.
520 J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
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B. Definition

Two sets of boundary conditions,a1(x)u(x)
1b1(x)t(x)50 and a2(x)u(x)1b2(x)t(x)50, where
a1(x), a2(x), b1(x), and b2(x) are given functions, are
said to be homogeneous, linearly independent boundary
ditions if and only if

detIa1~x! b1~x!

a2~x! b2~x!
IÞ0

for any x on the boundary.

C. Theorem 1

For the Helmholtz equation, given two systems havi
homogeneous, linearly independent boundary conditions
part of the boundary denoted asG1 , it is impossible for both
systems to have the same eigensolution.

Theorem 1 supports the conclusion we mention
above. Theorem 1 also hints that if there exists an ‘‘eigen
lution’’ to make two systems have homogeneous, linea
independent boundary conditions degenerated at the s
time, it must be the spurious eigensolution. Following th
now let us give the proof.

D. Theorem 2

For the Helmholtz equation, given a boundary conditi
as a1u1b1t50, the direct Trefftz formulationA1(k)c50
cannot have a spurious eigensolution.

E. Proof

Let us pick another system with a boundary condition
a2u1b2t50 and

detIa1 b1

a2 b2
IÞ0;

its corresponding eigenproblem is written asA2(k)c50.
Further, we assume that there exists a specific wave num
kc such that a nontrivial solution,c(x), can satisfy
A1(kc)c50 and A2(kc)c50 simultaneously. This mean
thatc(x) is a spurious eigensolution by Theorem 1. Suppo
there aren constant elements on the boundary for both pro
lems. Then, it can be said that the following linear system

FA1

A2
G

2n3n

5@c#n31Fa1Ũ1b1T̃

a2Ũ1b2T̃
G @c#n31

5Fa1I b1I

a2I b2I G
2n3n

F Ũ

T̃
G

2n3n

@c#n3150, ~9!

must be linear dependent whereI is ann by n identity ma-
trix. It can then be said that this is possible if and only if

rankS F Ũ

T̃
G D ,n. ~10!

If n is very large and equal or unequal length elemen
adopted, from Eqs.~7a! and~7b!, we can say that Eq.~10! is
equivalent to
Chang et al.: Direct Trefftz method to free vibration
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forming the SVD technique for the original system.~b!
Numerical contamination exists by only performing th
SVD technique for the auxiliary system.
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rankS F L jWi~xj !

L j

]Wi~xj !

]nj

G D ,n, ~11!

whereL j is the element length of thej th element. The above
equation is impossible to be achieved due to the linea
independent behavior of the base functionsWi(x). Actually,

rankS F L jWi~xj !

L j

]Wi~xj !

]nj

G D 5n.

This then leads to a contradiction and completes the pro

III. REGULARIZATION AND GENERALIZED
SINGULAR-VALUE DECOMPOSITION METHODS TO
DEAL WITH THE ILL-POSED PROBLEM

The Trefftz method adopts nonsingular base functio
and thus can be categorized into the regular BE
formulations.14 However, the regular formulation leads to th
J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
ly

.
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ill-posed behaviors while the nodes~or elements! increase.
Kuo et al.14 explained the reason and proposed a method
fix it. Here, we simply introduce the method Kuoet al. sug-
gested since we will use the same technique later on.

To treat the ill-posed behaviors, Kuoet al.14 proposed
using the Tikhonov’s regularization method and generaliz
singular-value decomposition. Now, let us briefly introdu
their idea. From Theorem 1, it can be seen that the spur
eigensolution will appear in two systems having homog
neous, linearly independent boundary conditions simu
neously. That is, we have a system as@A1#n3ncn31

5@A2#n3ncn3150. Since both problems can have comm
spurious eigensolutions, we can intuitively decompose b
matrices into the following form:

PW1x5PW2x50,

wherePW15A1 andPW25A2 . Then, spurious eigenvalue
will result in the rank deficiency of matrixP, and true eigen-
values will result in the rank deficiency of matrixW1 for the
original problem. When the spurious eigenvalues are enco
521Chang et al.: Direct Trefftz method to free vibration
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using Tikhonov’s regularization method and the SV
technique for the original system.~b! Numerical con-
tamination still exists after using the Tikhonov’s regu
larization method and the SVD technique for the aux
iary system.
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tered, basically we want to extract them by finding matrixP.
That is, to perform a numerical operation of L’Hospital ru
on an indefinite form of 0/0. The above-mentioned techniq
can be achieved using the QR factorization, which is the fi
step of the generalized singular-value decomposition.

Remember that the serious problem we encounter is
spurious eigensolution but numerical instability of this alg
rithm. To treat this, we will add some small quantities in
the matricesA1 andA2 to make the numerically tiny singula
values occurring in both matrices become ‘‘numerical spu
ous eigenvalues’’ such that the QR factorization can ext
them. LetA1 and A2 have the following singular value de
compositions:

A15PS1V1* , ~12a!

A25PS2V2* , ~12b!

whereV i is the right unitary matrix of systemi, the super-
script ‘‘* ’’ means take the transpose and complex conjug
of the matrix, andS i is a singular value matrix of systemi
522 J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
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with singular values allocated in the diagonal line. When o
of the singular values is numerically very small at a spec
wave number, it can be said that the system has degener
i.e., that the wave number is an eigenvalue. However, whe
nonsingular BEM is adopted, there exist many numeri
tiny values in the singular values, which are not true zer
This phenomenon becomes very severe when the numb
elements increases and/or a direct eigenvalue search is
at a low wave number. Now, let us add two small quantit
in the matrices to construct new influencing matrices as

Â15P~S11«1I !V1* , ~13a!

Â25P~S21«2I !V2* , ~13b!

where« i is the small value added to systemi. The choice of
« i is dependent on the problem itself; however, if they a
larger than the unreasonable tiny values of singular value
the original two systems, but still small enough not to ov
coat the true eigenvalue, one can then successfully ex
Chang et al.: Direct Trefftz method to free vibration
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FIG. 4. ~a! Numerical contamination is eliminated b
using Tikhonov’s regularization method, QR factoriz
tion, and the SVD technique for the original system.~b!
Numerical contamination is eliminated by usin
Tikhonov’s regularization method, QR factorization
and the SVD technique for the auxiliary system.
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the contaminated tiny value. If one takes the QR factori
tion of Â1 and Â2 , the unreasonable ones can be extrac
The idea can be seen in Fig. 2–Fig. 4. Before treatme
shown in Fig. 2, at low wave numbers some singular val
are very small for both systems. However, when the m
mum singular value of system one occurs for ‘‘mode sha
p’’ ~or pth singular vector!, the corresponding singular valu
of system two for the samepth singular vector may not be
the smallest one in system two. After QR factorization, t
singular value remains the smallest in system one such
we still cannot distinguish if it is an eigenvalue, as shown
Fig. 3. After treatment as shown in Fig. 4, the contamina
singular values for both systems are elevated. The QR
torization method extracts such singular values out
changes the order of the singular values. Adding such a s
value ~for instance,«51024 in Fig. 4! in the singular value
cannot change the facts of true degenerated singular va
That is, at the true eigenvalue, the singular value of sys
one should approach zero but its corresponding part in
J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
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tem two will not be close to zero. Using this method, we c
successfully treat the ill-posed behaviors; numerical
amples will be given in the next section.

IV. NUMERICAL EXAMPLES

A. Example 1

A circular domain with radiusRo51.0 and the Dirichlet
boundary condition,u50, is given.

Fifty-one constant elements are used, and the Neum
condition problem,t50, is chosen as the auxiliary problem
Using the Tikhonov’s regularization method and generaliz
singular-value decomposition, eigenvalues are found s
cessfully, as shown in Fig. 5. In this figure, the value in t
bracket is the analytical solution.

B. Example 2

A circular domain with radiusRo51.0 and the Neu-
mann boundary condition,t50, is given.
523Chang et al.: Direct Trefftz method to free vibration
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FIG. 5. Eigenvalues searching for the Dirichlet boun
ary condition of a unit circle by using the direct Trefft
method.

FIG. 6. Eigenvalues searching for the Neumann boun
ary condition of a unit circle by using the direct Trefft
method.

FIG. 7. Eigenvalues searching for the Neumann boun
ary condition of a square by using the direct Treff
method with an auxiliary system,u50.
524 J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002 Chang et al.: Direct Trefftz method to free vibration
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FIG. 8. Eigenvalues searching for the Neumann boun
ary condition of a square by using the direct Treff
method with a different auxiliary system, 2u13t50.

FIG. 9. Eigenvalues searching for the Dirichlet boun
ary condition of an annular region.

FIG. 10. Eigenvalues searching for the Dirichlet boun
ary condition of the multiply connected domain.
525J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002 Chang et al.: Direct Trefftz method to free vibration



e
FIG. 11. Eigenvalues searching for the Robin-typ
boundary condition of a unit circle.
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In this example, we can see that our method is valid
all kinds of boundary conditions. Again, 51 constant e
ments are used and the Dirichlet condition problem,u50, is
used as the auxiliary problem. Using the proposed meth
eigenvalues are successfully found and are very close to
analytical values, as shown in Fig. 6.

C. Example 3

A square membrane with edge lengthLo51.0 and the
Neumann boundary condition,t50, is prescribed.

In this example, a domain without radial symmetry
illustrated. Eighty-one constant elements are used and
Dirichlet boundary problem,u50, is chosen as the auxiliar
problem. It can be found in Fig. 7 that the numerical resu
match the analytical solutions very well.

We have claimed that any problem having a linea
independent boundary condition to the original problem c
be used as an auxiliary problem. In this example, we
another auxiliary problem 2u13t50. The results are show
in Fig. 8, and our approach works as expected.

D. Example 4

An annular region with the outer radiusRo51.0 and
inner radiusRi50.2, and a Dirichlet boundary condition,u
50, is prescribed on the boundary.

The domain is a multiply connected domain, whi
shows the superiority of the current approach over Ku
method.14 Their methods were proven to fail when a multip
connected domain is treated. However, the direct Tre
method can easily overcome this problem by putting the
gin inside the hole. In this example, 51 elements are used
the outer and inner boundaries. The auxiliary problem is
Neumann problem,t50. As shown in Fig. 9, eigenvalue
can be found successfully. The analytical values are obta
using the eigenequation27

@Jm~kRo!Ym~kRi!2Ym~kRo!Jm~kRi!#50.
526 J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002
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E. Example 5

A multiply connected domain with the outer boundary
a square with edge lengthLo52.0, and the inner boundary i
a circle with a radiusRi50.2. The origin of the circular hole
is the geometric center of the whole domain. The bound
condition is the Dirichlet condition,u50.

In this example, no analytical solution is available. W
compared our results with those obtained from the comp
valued dual BEM. The auxiliary system is the Neuma
problem, t50. As shown in Fig. 10, numerical results ob
tained from the direct Trefftz method are close to those
tained from the complex-valued dual BEM. The reason w
a complex-dual BEM is required is explained in Chang
dissertation.27 He explained that solving an eigenvalue pro
lem of a multiply connected domain by the complex-valu
singular integral equation or the complex-valued hypersin
lar integral equation will result in an unreasonable numeri
resonance. He named this kind of degeneracy of the di
BEM the pseudofictitious eigenvalue. To treat this unreas
able degeneracy, a combined use of singular and hypersi
lar integral equations was suggested. For more detail, rea
can refer to Chang’s dissertation.27

F. Example 6

A circular domain with radiusRo51.0 and the Robin-
type boundary condition, 2u13t50, is given on the bound-
ary.

The analytical values for this case can be obtained
using the true eigenequation as:14 2Jm(kRo)13Jm8 (kRo)
50. In this case, 31 elements and 31 bases are used c
spondingly. When the Tikhonov’s regularization method a
generalized singular-value decomposition are adopted, ei
values are found successfully and numerical results ma
analytical solutions very well, as shown in Fig. 11.
Chang et al.: Direct Trefftz method to free vibration
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V. CONCLUSIONS

In this paper, the direct Trefftz method was used to so
the free-vibration problem of a membrane. It was found t
the direct Trefftz method has no spurious eigenvalues,
leads to numerical instability when the number of eleme
increases and/or an eigenvalue search is conducted in the
wave number range. To treat this ill-posed behavior,
adopted the Tikhonov’s regularization method and the g
eralized singular-value decomposition. The direct Tre
method can easily treat a multiply connected domain of
nus 1 by putting the origin inside the hole. Six numeric
examples were provided to show the validity of the curr
approach, and good matches can be achieved in compa
with the analytical solutions or numerical results obtain
from other methods.
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