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SUMMARY 
The present paper is concerned with the effective numerical implementation of the two-dimensional dual 
boundary element method, for linear elastic crack problems. The dual equations of the method are the 
displacement and the traction boundary integral equations. When the displacement equation is applied on 
one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be 
solved with a single-region formulation. Both crack surfaces are discretized with discontinuous quadratic 
boundary elements; this strategy not only automatically satisfies the necessary conditions for the existence of 
the finite-part integrals, which occur naturally, but also circumvents the problem of collocation at crack tips, 
crack kinks and crack-edge corners. Examples of geometries with edge, and embedded crack are analysed 
with the present method. Highly accurate results are obtained, when the stress intensity factor is evaluated 
with the J-integral technique. The accuracy and efficiency of the implementation described herein make this 
formulation ideal for the study of crack growth problems under mixed-mode conditions. 

INTRODUCTION 

The boundary element method (BEM) is a well established numerical technique in the engineer- 
ing community, see Brebbia and Dominguez.’ Its formulation in elastostatics can be based either 
on Betti’s reciprocity theorem,’ or simply based on the classical work t h e ~ r e m . ~  In both cases, 
a single boundary integral equation is obtained. The BEM has been successfully applied to linear 
elastic problems in domains containing no degenerated geometries. These degeneracies, either 
internal or edge surfaces which include no area or volume and across which the displacement field 
is discontinuous, are defined as mathematical cracks. For symmetric crack problems only one 
side of the crack need be modelled and a single-region BEM analysis may be used. However, in 
a single-region analysis, the solution of general crack problems cannot be achieved with the direct 
application of the BEM, because the coincidence of the crack surfaces gives rise to a singular 
system of algebraic equations. The equations for a point located at one of the surfaces of the crack 
are identical to those equations for the point, with the same co-ordinates, but on the opposite 
surface, because the same integral equation is collocated with the same integration path, at both 
coincident points. 

Some special techniques have been devised to overcome this difficulty. Among these the most 
important are: the crack Green’s function m e t h ~ d , ~  the displacement discontinuity method,’ the 
subregions method,6 and the dual boundary element m e t h ~ d . ~  The crack Green’s function 
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method, which eliminates the need for discretization of the crack, is limited to problems with 
a single straight traction-free crack. Its generalization to multiple-crack problems introduces 
subregions to separate each individual crack, see Kuhn.' The displacement discontinuity method, 
where the unknown functions are the displacement differences between the crack surfaces, can be 
used directly. However, the use of derivatives in the formulation introduces higher order 
singularities into the boundary integrals, see Sladek et al.' and Cruse. lo  The subregions method 
introduces artificial boundaries into the body, which connect the cracks to the boundary, in such 
a way that the domain is divided into subregions without cracks. The main drawback of this 
method is that the introduction of artificial boundaries is not unique, and thus cannot be easily 
implemented into an automatic procedure. In addition, the method generates a larger system of 
algebraic equations than is strictly required. Despite these drawbacks, the subregions method has 
been the most widely used technique for crack problems. 

The use of dual integral equations in crack problems was first reported by Bueckner.l In the 
boundary element method, dual equations were first presented by Watson,' in a formulation 
based on the displacement equation and its normal derivative. The theoretical bases of the dual 
boundary element method (DBEM) were presented by Hong and c h e ~ ~ , ~  in a general formulation 
which incorporates the displacement and the traction boundary integral equations. General 
mixed-mode crack problems can be solved with the DBEM, in a single-region formulation, when 
the displacement boundary integral equation is applied on one of the crack surfaces and the 
traction boundary integral equation on the other. Although the integration path is still the same 
for coincident points on the crack surfaces, the respective boundary integral equations are now 
distinct. Dual boundary element equations have been applied to solve problems in three- 
dimensional potential theory by Gray,' and in three-dimensional elastostatics by Gray et a1.14 

An essential ingredient of both these formulations is the analytic evaluation of the singular 
integrals that arise from the normal derivative boundary integral equation. This feature required 
a special integration path around the singular point, which can be troublesome. Furthermore, the 
extension to edge crack problems was not dealt with in their formulation. Dual boundary element 
equations have also been applied to two-dimensional problems. In elastostatics Watson' 
presented results for an embedded crack problem. In potential theory, Rudolphi et a1.l' presented 
results exhibiting unexplained oscillations. Thus, there is a clear need for an alternative crack 
modelling strategy for the analysis of general crack problems. 

The present paper is concerned with the effective numerical implementation of the two- 
dimensional DBEM, for solving general linear elastic fracture mechanics problems. The dual 
boundary integral equations are presented, the crack modelling discussed and the finite-part 
integrals defined. At the source point, in the traction boundary integral equation, the requirement 
of continuity of both the tractions and the strains implies that discretization of a crack is best 
done with discontinuous quadratic boundary elements. In addition, the problem of collocation at 
crack tips, crack kinks and crack-edge corners is automatically circumvented by the use of 
discontinuous elements. The effective treatment of the improper integrals of the dual equations is 
a matter of fundamental importance in the DBEM. For curved boundary elements, the natural 
definition of ordinary finite-part integrals is applied to regularize the improper integrals. For flat 
boundary elements, analytic integration is carried out. 

The use of the standard rigid body condition, to obtain indirectly the diagonal terms of the 
algebraic equations at crack nodes, is no longer possible because of the existence of symmetric 
terms in the integrations on the opposite elements. Finally, the stress intensity factor is introduced 
in terms of displacement extrapolations, as well as the J-integral, and numerical results are 
obtained for several edge and internal cracked geometries. It is demonstrated that the present 
modelling strategy can be used for solving general crack problems accurately and efficiently. 
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THE DUAL BOUNDARY INTEGRAL EQUATIONS 

The dual equations, on which the DBEM is based, are the displacement and the traction 
boundary integral equations. The presentation of the boundary integral equations follows 
Cruse.16 In the absence of body forces, the boundary integral representation of the displacement 
components ui, at an internal point X ,  is given by 

I- I- 

ui(X‘) + J T,,(X’, x)uj(x)dr(x) = Uij(X, x)tj(x)dr(x) 
r 

where i and j  denote Cartesian components; Gj(X‘, x) and Uij(X’, x) represent the Kelvin traction 
and displacement fundamental solutions, respectively, at a boundary point x. The distance 
between the points X and x is denoted by r. The integrals in equation (1) are regular, provided 
r # 0. As the internal point approaches the boundary, that is as X -+ x‘, the distance r tends to 
zero and, in the limit, the fundamental solutions exhibit singularities; they are a strong singularity 
of order l / r  in Ti j  and a weak singularity of order lnl/r in Uij. Assuming continuity of the 
displacements at x’, this limiting process produces, in the first integral of equation (l), a jump term 
on the displacement components and an improper integral. For a boundary point, equation (1) 
can now be written as 

f f 

where f stands for the Cauchy principal-value integral, and the coefficient cij(x’) is given by 6,/2 
for a smooth boundary at the point x’ (6, is the Kronecker delta). 

In the absence of body forces, the stress components oij are obtained by differentiation of 
equation (l), followed by the application of Hooke’s law; they are given by 

r r 

In this equation, sijk(X, x) and Dijk(X, x) are linear combinations of derivatives of Ej(X’, x) and 
Uij(X, x), respectively. The integrals in equation (3) are regular, provided r # 0. As the internal 
point approaches the boundary, that is as X -+ x’, the distance r tends to zero and s i j k  exhibits 
a hypersingularity of the order l /r2,  while Dijk exhibits a strong singularity of the order l l r .  
Assuming continuity of both strains and tractions at x’, the limiting process produces improper 
integrals and jump terms in strains and tractions, in the first and second integrals of equation (3), 
respectively. For a point on a smooth boundary, these jump terms are equivalent to boundary 
stresses. Hence, equation (3) can now be written as 

wheref stands for the Hadamard” principal value integral. On a smooth boundary, the traction 
components, ti, are given by 

f 1 
2 
- tj(X’) $. ni(Xr) f sijk(X’, X)Uk(X)dr(X) = ni(X’) Dijk(X’, X)tk(X)dr(X) 

where ni denotes the ith component of the unit outward normal to the boundary, at the point x‘. 
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Equations (2) and (5 )  constitute the basis of the DBEM. On a traction-free crack, these equations 
are simplified; the displacement and the traction equations are given by 

r 

and 

respectively, where Tc denotes the crack boundary. 
Both Cauchy and Hadamard principal-value integrals are finite parts of improper integrals, see 

Kutt’’ and Linz.” Integral representations, involving improper or divergent integrals in terms of 
finite-part integrals, have been used before in fracture mechanics, see Bueckner’ and 
Ioakimidis.” 

CRACK MODELLING STRATEGY 

The necessary conditions for the existence of principal-value integrals, assumed in the derivation 
of the dual boundary integral equations, impose special restrictions on the crack modelling. 
Consider that both the geometry and boundary field variables are described by a piece-wise 
continuously differentiable approximation. Thus, the Cauchy and Hadamard principal-value 
integrals are equivalent to finite-part integrals of first and second order, respectively. Some basic 
definitions of finite-part integrals, in the context of the DBEM, are presented in Reference 21. 

Consider that collocation is always done at the boundary element nodes. Under this circum- 
stance, the finite-part integral of first order, in the displacement equation (6), requires continuity 
of the displacement components at the nodes: any continuous or discontinuous boundary 
element satisfies this requirement. In the traction equation (7), the finite-part integral of second 
order requires continuity of the displacement derivatives at the nodes, on a smooth boundary: 
discontinuous quadratic boundary elements implicitly have the necessary smoothness, since the 
nodes are internal points of the element. It is important to realize that if the element approxima- 
tion does not satisfy these necessary continuity requirements then the finite-part integrals do not 
exist and spurious results can be expected from the computations. 

For the sake of efficiency and to keep the simplicity of the standard boundary elements, the 
present formulation uses discontinuous quadratic elements for the crack modelling, as shown in 
Figure 1. The general modelling strategy developed in the present paper can be summarized as 
follows: 

(i) the crack boundaries are modelled with discontinuous quadratic elements, as shown in 

(ii) the displacement equation (2) is applied for collocation on one of the crack surfaces; 
(iii) the traction equation (5 )  is applied for collocation on the opposite surface; 
(iv) continuous quadratic elements are used along the remaining boundary of the body, except 

at the intersection between a crack and an edge, where discontinuous or semi-discontinu- 
ous elements are required on the edge in order to avoid a common node at the intersection, 
see Figure 1. 

This simple strategy is robust and allows the DBEM to effectively model general edge- or 
embedded-crack problems; crack tips, crack-edge corners and crack kinks do not require special 
treatment, since they are not located at nodal points where the collocation is carried out. Other 

Figure 1; 



THE DUAL BOUNDARY ELEMENT METHOD 1273 

alternatives to discontinuous elements can be used to model the crack, but they are not as 
efficient. For instance, Hermitian boundary elements, see Watson,12 and Overhouser boundary 
elements, see Walters et ~ 1 . ’ ~ ~  also suit the continuity requirements. However, they are not readily 
suitable to deal with edge-crack and kinked-crack problems, as further analysis is required to 
consider continuity conditions at corners and kinks; in addition, they require more extensive 
programming. 

TREATMENT O F  FINITE-PART INTEGRALS 

The improper integrals, that arise in the dual integral equations, are easily handled by the 
classical singularity-subtraction method, which leads to the natural definition of ordinary 
finite-part integrals. In the vicinity of a collocation node the regular part of the integrand is 
expressed as a Taylor’s expansion. If a sufficient number of terms of the expansion are subtracted 
from the regular part of the integrand and then added back, the singularity can be isolated. The 
original improper integral is thus transformed into the sum of a regular integral and an integral of 
the singular function. This latter integral is then evaluated analytically, while standard Gaussian 
quadrature is used for numerical integration of the regular integral. The procedure is general and 
applicable to any type of boundary element, in which the necessary conditions for the existence of 
the finite-part integrals are implicitly satisfied. See Reference 2 1 for basic definitions of finite-part 
integrals, in the context of the DBEM. 

Consider a discontinuous quadratic boundary element of general shape, re, that contains the 
collocation node. The local parametric co-ordinate 5 is defined, as usual, in the range 
- 1 d ( d + 1 and the collocation node g’ is mapped onto x’, via the continuous element shape 
functions. The displacement components, uj,  are approximated in the local co-ordinate by means 
of the nodal values, u J ,  and the discontinuous element shape functions. The first-order finite-part 
integral of equation (6) can be expressed in the local co-ordinate as 

whereEj(t) is a regular function, given by the product of the fundamental solution, a shape 
function and the Jacobian of the co-ordinate transformation, multiplied by the term 5 - t’. The 

A 
A 

Y-  : 1 B Kink 

- Element node 
x - Element end point 
A - Displacement equation 
B - Traction equation 

Figure 1. Crack modelling with discontinuous quadratic boundary elements 
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integral of the right hand side of equation (8) can be transformed with the aid of the first term of 
a Taylor’s expansion of the function f y j ,  around the collocation node, to give 

’ 

Now, the first integral of the right hand side is regular and the second one can be integrated 
analytically to give 

In equation (9), the existence of the finite-part integral requires the Holder continuity offlj, at the 
collocation node. For the discontinuous element, this requirement is automatically satisfied, 
because the nodes are internal points of the element, whereflj is continuously differentiable. The 
second order finite-part integral of equation (7) can be expressed in the local parametric 
co-ordinate as 

where gnjk(<) is a regular function, given by the product of the fundamental solution, a shape 
function and the Jacobian of the co-ordinate transformation, multiplied by the term (5 - 5’)’. 
The integral on the right hand side of equation (1 1) can be transformed with the aid of the first and 
second terms of a Taylor’s expansion of the density function gfjk, in the neighbourhood of the 
collocation node, to 

where g$l) denotes the first derivative of &. At the collocation node the function gyjk is required 
to have continuity of its second derivative or, at least, a Holder-continuous first derivative, for the 
finite-part integrals to exist. This requirement is automatically satisfied by the discontinuous 
element, since the nodes are internal points of the element. Now, in equation (12), the first integral 
on the right hand side is regular and the third integral is identical with the one given in equation 
(10). The second integral on the right hand side of equation (12) can be integrated analytically 
to give 

Equations (9) and (12) are the ordinary double-sided first- and second-order finite-part integrals 
respectively, as defined by Kutt.18 

In many practical problems the cracks are flat; but cracks do grow along curved paths which 
are usually modelled as piece-wise flat. For piece-wise flat cracks, all the integrals in equations (9) 
and (12) are most effectively carried out by direct analytic integration, which is presented in the 
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following. Consider a flat discontinuous quadratic boundary element, with the nodes positioned 
arbitrarily at the points 5 = - 3, 5 = 0 and 5 = + 3. The shape functions of this element are 
given by 

For this element, the integral of equation (6) is represented by 

r f+l 

where u" denotes the nodal displacement components and J (5 )  is the Jacobian of the co-ordinate 
transformation. Because of the assumed flatness of the element, J = 2/2, where I represents the 
element length and the matrix h" is given by 

The first-order finite-part integrals are integrated analytically to give 

and 
f Z A d 5 = - (  3 t'(35' + 2)ln /-----/+3t'+2) 1 - 5' 

- 1  5 - r '  4 1 + 5 '  

The integral of equation (7) is represented by 

where the matrix h" is given by 

The matrix s' is given by 

1 + n1(2n% + 1) - n2( - 2ng + 1) 
+ n1(2nf - 1) - n2( - 2nf - 1) 
- n2(2nf - 1) + nl(  - 2 4  + 1) 

(17) 
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where n,  and n2 are the components of the unit outward normal to the element. The second-order 
finite-part integrals of equation (20) are integrated analytically to give 

N1 6e2 - 25' - 3 

and 

Equation (20) shows that the terms of the matrix h" are inversely proportional to the element 
length, 1. This property is computationally advantageous because it can lead to diagonally 
dominant systems of algebraic equations. This is an obvious advantage of the present method, 
over the methods that use a regularized version of the traction equation. 

THE RIGID BODY CONDITION 

When collocation is performed at a crack node there are always two elements, on opposite faces, 
that contain the collocation point, because both crack surfaces are discretized. This means that, 
along the crack, the finite-part integrals in equations (6) and (7) are required twice: once on the 
element that contains the collocation node, that is the self-point element, and again, on the 
opposite element, which is also a self-point element, since it contains the node which is coincident 
with the collocation node. This peculiar feature of the DBEM puts restrictions on the use of the 
standard rigid body condition to indirectly evaluate diagonal terms at crack nodes, as explained 
in the following. Consider a constant displacement field, with components ui(x) = C, defined 
throughout the body. In this circumstance the traction components are zero and equation (2) 
gives 

cij(x') + Tj(x', x)dr(x) = 0 f 
while equation (5) gives 

ni(x')f Sijk(x', x)dr(x) = 0 

Equations (25) and (26) express the usual rigid body condition that must be satisfied by the dual 
boundary integral equations at every collocation point. According to equation (25), the coefficient 
cij(x') need not be dealt with directly. When the equation is discretized, this coefficient, together 
with the finite-part integral, is determined by the row sum technique. However, for collocation at 
a crack node, the row sum technique can no longer be used if the integration along opposite 
self-point elements has any symmetric terms (equal in magnitude but opposite in sign), since they 
will cancel each other in the sum. It can be shown, through equations (14) to (18), that the 
off-diagonal terms of the first and last nodes of the elements used here are symmetric, with the 
finite-part integrals given by (In 5 - 3) and ( - In 5 + 3), respectively. Bearing in mind that 
opposite self-point elements have their first and last nodes interchanged, it is evident that two 
symmetric off-diagonal terms are obtained from the collocation at either one of these nodes and 
integration along opposite self-point elements. According to equation (26), it appears that the row 
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sum technique can be used to evaluate indirectly the diagonal terms of the discretized form of the 
traction equation. Again, it can be shown, through equations (19) to (24), that the diagonal terms 
of any crack node are symmetric with respect to its opposite node. These features invalidate the 
use of the standard rigid body condition, expressed in equations (25) and (26), to indirectly 
evaluate diagonal terms at crack nodes. 

THE STRESS INTENSITY FACTOR EVALUATION 

The different techniques used in the boundary element method for the evaluation of stress 
intensity factors are described by Aliabadi and R ~ o k e . ~ ~  Near-tip displacement extrapolation 
and J-integral methods were used to obtain the numerical results of the next section. 

In the neighbourhood of the crack tip, the elastic field is defined by an infinite series expansion 
that can be decoupled into mode I and I1  component^.^^ At the crack tip, the first term of the 
stress series is singular, while the remaining terms give zero stresses. Let r, 6 be a polar co-ordinate 
system, centred at the crack tip, such that 8 = k 7c defines the crack surfaces. Considering only 
the first term of the Williams’ expansion, the displacement field on the crack surfaces can be 
written as 

- and 

Kn /& K + l  
Ul(6 = 7c) - Ul(6 = - 7c) = - 

P 
where p is the shear modulus and tc = 3 - 41; for plane strain g = v and for plane stress 
g = v/ ( l  + v), where v is the Poisson’s ratio. The constants KI and KII are the stress intensity 
factors for the deformation modes I and 11, respectively. They can be computed from equations 
(27) and (28), when the displacements on the crack surfaces are known from a boundary element 
solution. Consider flat discontinuous quadratic boundary elements, with the non-central nodes 
located arbitrarily at internal points distant 1/6 from the end points (the results were found to be 
insensitive to the position of the non-central nodes), in which 1 denotes the element length. The 
two opposite elements that share the crack tip are represented in Figure 2. Using equations (27) 

- Element node 
x - Element end point 

Figure 2. Crack-tip boundary elements 
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and (28), the stress intensity factors, evaluated with the displacements of the nodes D - E and 
I; - G, are given by 

and 

respectively. By means of a linear extrapolation, from the nodes D - E and F - G to the crack 
tip, the stress intensity factors can be evaluated by 

and 

Equations (29) and (30), along with equations (33) and (34), are the ones used for the computation 
of the stress intensity factors, presented in the next section. 

The J-integral is an effective method for the determination of stress intensity factors, because 
the elastic field can be accurately determined, with the boundary element method. Consider 
a Cartesian reference system, defined at the tip of a traction-free crack, as shown in Figure 3. 
Neglecting the body forces, Rice' introduced the path-independent J-integrai; the rate of energy 
released per unit of crack translation in the xk direction is defined as 

J k  = (wnk - tjUj,k)dr (35) 
Ir 

Internal points symmetricaly defined 
i n  the reference system q r z 2  

b) Circular contour a) General C o i i t o i i r  

Figure 3. Co-ordinate reference system and contour path for J-integral 
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in which r is an arbitrary contour surrounding the crack tip; W is the strain energy density, 
W = 4oi jg i j ,  where cij and g i j  are the stress and strain tensors, respectively; t j  are the traction 
components, defined along the contour, t j  = oijni, where ni are the components of the unit 
outward normal to the contour path. The relations between the components of the J-integral and 
the stress intensity factors are given by 

and 

where the constants E' is the elasticity modulus E for plane stress conditions and E' = E/(1 - v2) 
for plane strain conditions. Application of equations (36) and (37) to mixed-mode crack problems 
has been limited owing to difficulties in decoupling the mode I and mode I1 stress intensity factors 
from the J-integral components. However, a simple procedure based on the decomposition of the 
elastic field into its respective symmetric and antisymmetric mode components, can be used to 
decouple the stress intensity factors of a mixed-mode problem. This procedure was first presented 
by Kitagawa et aE.26 and used in the boundary element method by Aliabadi.27 The integral J1 is 
represented by the sum of two integrals as follows: 

J1 = J\ + J:' (38) 
where the superscripts indicate the pertinent deformation mode. For this representation to be 
possible, it is sufficient to introduce the following decomposition in the elastic fields: 

and 

(39) 

(40) 

in which 

Gij(x1, ~ 2 )  = ci j (x1,  - ~ 2 )  

and 

Equations (39) and (40) lead to the following decompositions of the elastic field 

ui(x1, ~ 2 )  = ui(x1, - x2) 

and 
ui = uf + uf' 

When equations (41) and (42) are introduced in equation (35), equation (38) is obtained, with the 
J-integral components given by 
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for M = I or M = 11. Finally, the following relations hold: 

The implementation of this procedure into the boundary element method is straightforward. 
A circular contour path, around the crack tip, is defined with a set of internal points, located at 
symmetrical positions, relatively to the crack plane, as shown in Figure 3. The two contour points 
on the crack surfaces are the first and the last points of the path respectively. In a circular path, at 
these points, it is always verified that nl = - 1, I t z  = 0 and thus, for a traction-free crack, tz  = 0. 
For the sake of simplicity, only circular paths containing crack nodes were considered. The 
integration, along the contour path, can be accomplished with the trapezoidal rule or by 
Gaussian quadrature. 

NUMERICAL RESULTS 

The results obtained with displacement extrapolations will be referred to in terms of the 
definitions presented in Figure 2. For the J-integral calculations, only circular paths, centred at 
the tip and containing a pair of crack nodes, were considered; each path is referred to by a path 
number which increases as the radius of the contour increases, as shown in Figure 4. 

As a first test, consider a rectangular plate, with a single horizontal edge crack, represented in 
Figure 5. The crack length is denoted by a, the width of the plate is denoted by w and the height by 
2h. The plate is subjected to the action of a uniform traction t; symmetrically applied at the ends. 
Results have been obtained for the cases in which h/w = 0-5, in order to be compared with the 
results published by Civelek and Erdogan.’* Five cases were considered, with u/w = 0.2,0.3,0-4, 
0.5 and 0.6, respectively. A convergence study was carried out with three different meshes of 32, 

x - Element end point 
- Element node 

Figure 4. Circular path numbering system for J-integral contours 
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Table 

h 

I. 

- 1 1 1 1 1 3 r  

Figure 5. Rectangular plate with a single edge crack (h/w = 0.5) 

Stress intensity factors for a single horizontal edge crack in a rectangL.ar plate 
(h/w = 0.5) 

Displ./extrap. J-integral contour path 
Reference 

G / W  D-E D-EF-G 2 3 4 5 8 28 

0 2  1.566 1.618 1.496 1.495 1.495 1.494 1.495 1.488 
0.3 1.962 2.014 1.860 1.859 1.858 1.857 1.858 1.848 
0.4 2.230 2.537 2340 2.338 2.338 2.336 2.335 2-324 
0-5 3.268 3.292 3.032 3.029 3-028 3.025 3.021 3.010 
0 6  4.580 4558 4.188 4.185 4.184 4.179 4,168 4.152 

40 and 64 quadratic boundary elements, in which the crack was discretized with 4, 5 and 8 
quadratic discontinuous elements on each surface, respectively; convergence was achieved with 
the mesh of 32 elements (differences between the results of the 32 and 64 element meshes are 
less than 0.1 per cent), in which the crack discretization was graded, towards the tip, with the 
ratios 04, 03, 0-2 and 0.1. The results obtained with the mesh of 32 elements are presented in 
Table I. For the J-integral computations, 10 internal points and the trapezoidal rule were used. 
Comparing the results of the displacement extrapolations with those of Reference 28, it can be 
concluded that the central nodes formula D - E is more accurate than the extrapolation formula 
D - E F - G, with percentage differences between 4 and 10, relatively to the results of Reference 
28. On the other hand, the results obtained with the J-integral show a high level of accuracy; the 
largest difference between these results and those of Reference 28 does not exceed 0.6 per cent. 
Also, notice the stability of the J-integral results, for any contour path. Figure 6 shows the initial 
and deformed boundary element meshes for the case a/w = 0-6. Notice that, although discontinu- 
ous elements are used to model the crack surfaces, no oscillations are present in the results. This is 
an important feature of the present formulation that clearly differs from that reported in the work 
of Rudolphi et ale1 
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Figure 6. Initial and deformed boundary element meshes for the edge-crack problem (a/w = 0.6) 

h 

h 

! 

Figure 7. Rectangular plate with a central slant crack (h/w = 2, 0 = 45") 

Consider, now, the analysis of a central slant crack in a rectangular plate, represented in Figure 
7. The plate is loaded with a uniform traction f, symmetrically applied at the ends. The 
ratio between the height and the width of the plate is given by h/w = 2. The crack has the length 
2a and makes an angle of 8 = 45" with the horizontal direction. Accurate results for this problem 
were published by M~rakami .*~  To solve this problem with the DBEM, a mesh of 36 quadratic 
boundary elements was set up, in which 6 discontinuous elements were used on each side of the 
crack, graded towards the tips, with the ratios 0.25, 0.15 and 0.1. The results obtained are 
presented in Tables I1 and 111. The J-integral computations were carried out with 30 internal 
points and trapezoidal integration rule. With such a coarse mesh, the results obtained with the 
J-integral are remarkably accurate; the present results match those of Reference 29 within two 
decimal places. For mode 11, the stability of the J-integral results is slightly lower than for mode I. 
This means that, in the deformation mode 11, the variation of the elastic field along the contour 
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Table 11. Mode I stress intensity factors for a central slant crack in a rectan- 
gular plate (h/w = 2, 0 = 45"). 

Displacements J-integral contour path 
Reference 

a / w  D - E  2 3 4 5 8 29 

0.2 0531 0521 0519 0521 0521 0521 0.518 
0.3 0554 0544 0542 0.544 0.544 0544 0541 
0 4  0.588 0.575 0.574 0.576 0.576 0.576 0.572 
05 0632 0616 0.614 0.617 0.617 0616 0.612 
0.6 0686 0666 0665 0667 0.667 0.666 0.661 

Table 111. Mode I1 stress intensity factors for a central slant crack in 
a rectangular plate (h/w = 2, 8 = 45"). 

Displacements J-integral contour path 
Reference 

alw D - E  2 3 4 5 8 29 

0.2 0519 0.499 0499 0501 0503 0508 0507 
03 0528 0508 0508 0511 0.512 0.517 0.516 
0.4 0.541 0.521 0521 0523 0525 0-529 0.529 
0.5 0.558 0.538 0.538 0.541 0.542 0.547 0546 
0.6 0.579 0.560 0.560 0.562 0.564 0.569 0.567 

Figure 8. Initial and deformed boundary element meshes for the centre-crack problem (u/w = 0.6) 
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Figure 9. Rectangular plate with an internal kinked crack (h/w = 2, a / w  = 0.1) 

Table IV. Mode I stress intensity factors for tip A; rectangular plate with an 
internal kinked crack (h/w = 2, a/w = 0.1) 

Displacements J-integral contour path 
Reference 

b/a D - E 2 3 4 5 8 29 

0.2 1.021 0-998 0.995 0.997 0.996 0.993 0.995 
0 4  1.018 0993 0.990 0.992 0991 0.989 0.990 
0 6  1.017 0990 0987 0989 0988 0987 0986 

Table V. Mode I1 stress intensity factors for tip A; rectangular plate with an 
internal kinked crack (h/w = 2, a/w = 0.1) 

Displacements J-integral contour path 
Reference 

b/a D - E 2 3 4 5 8 29 

0.2 0030 0.029 0.029 0030 0.030 0.030 0.028 
0.4 0036 0034 0035 0035 0.035 0036 0033 
0 6  0032 0.031 0.032 0032 0032 0032 0.030 

paths is not accurately approximated with the trapezoidal integration rule. Improved stability 
could easily be obtained by considering either more internal points along each path or a higher 
order integration rule. Figure 8 shows the initial and deformed boundary element meshes for the 
case a f w = 0.6. 

As a final test, consider the analysis of a rectangular plate, with an internal kinked crack, 
represented in Figure 9. One of the segments of the crack is horizontal with length a while the 
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Table VI. Mode I stress intensity factors for tip B; rectangular plate with an 
internal kinked crack (h/w = 2, a/w = 0 1 )  

Displacements J-integral contour path 
Reference 

b/a D - E 2 3 4 5 8 29 

0.2 0.634 0-605 0.603 0603 0604 0.604 0598 
0.4 0.603 0.578 0-576 0.576 0.576 0.576 0-574 
0.6 0.595 0-572 0-570 0.570 0.570 0570 0.568 

Table VII. Mode I1 stress intensity factors for tip B rectangular plate with 
an internal kinked crack (h/w = 2, a/w = 01) 

KII/(i&) 

Displacements J-integral contour path 
Reference 

b/a D - E 2 3 4 5 8 29 

0 2  0589 0.556 0-556 0555 0.555 0.556 0557 
0.4 0.637 0602 0.602 0.601 0602 0.603 0.607 
0.6 0.659 0.623 0.623 0.623 0.623 0.624 0.627 

other segment makes an angle of 45" with the horizontal and has a length b; the horizontal 
projection of the total crack is given by 2c = a + , / 2b /2 .  The kink of the crack is at the centre of 
the plate, which has a height equal to twice the width and is loaded at the ends with a uniform 
traction f. Three cases were considered, b/u = 02,0.4 and 0.6, with a/w = 01 .  The stress intensity 
factors were obtained for both tips A and B, with a boundary element mesh of 48 quadratic 
elements, in which the horizontal and the inclined segments of the crack were discretized with 5 
and 4 discontinuous quadratic elements on each crack face, respectively. The results are presented 
in Tables IV to VII. Accurate results for comparison are published by Murakami." Again, the 
performance of the DBEM is excellent, when the stress intensity factors are evaluated with the 
J-integral. Even with the present relatively coarse mesh, the results obtained match those of 
Reference 29 within two decimal places. 

CONCLUSIONS 

The DBEM incorporates two independent boundary integral equations; one is the usual displace- 
ment boundary integral equation and the other one is the traction boundary integral equation. 
When the displacement equation is applied on one of the crack surfaces and the traction equation 
is applied on the other, general mixed-mode crack problems can be solved in a single-region 
formulation. The existence of the finite-part integrals of the traction equation requires continuity 
of the strains at the collocation node, on a smooth boundary. Because of this requirement, both 
crack surfaces are discretized with standard discontinuous quadratic boundary elements. In 
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addition? the discontinuous elements circumvent the problem of collocation at crack tips, crack 
kinks and crack-edge corners. The effective treatment of the hypersingular integrals that appear 
in the traction equation is of fundamental importance. For curved boundary elements a regulariz- 
ation integration formula, based on the definition of ordinary finite-part integrals, is proposed in 
the present paper. For flat boundary elements, the direct analytic integration is the most effective 
method to deal with such integrations. At a crack node, singular integrations do occur twice, once 
on the self-point element and again in the opposite one. This feature prevents the use of the 
standard rigid body condition to evaluate indirectly the diagonal terms of the algebraic equations 
at crack nodes. Several cracked geometries were analysed with the DBEM; accurate stress 
intensity factors were always obtained with the J-integral method. 
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