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SUMMARY

In this paper, the spurious eigenequations for annular plate eigenproblems by using BIEM and BEM
are studied in the continuous and discrete systems. Since any two boundary integral equations in the
plate formulation (4 equations) can be chosen, 6 (C4

2 ) options can be considered instead of only two
approaches (single-layer and double-layer methods, or singular and hypersingular equations) which are
adopted for the eigenproblems of the membrane and acoustic problems. The occurring mechanism of
the spurious eigenequation for annular plates in the complex-valued formulations is studied analytically.
For the continuous system, degenerate kernels for the fundamental solution and the Fourier series
expansion for the circular boundary density are employed to derive the true and spurious eigenequations
analytically. For the discrete system, the degenerate kernels for the fundamental solution and circulants
resulting from the circular boundary are employed to determine the true and spurious eigenequations.
True eigenequation depends on the specified boundary condition while spurious eigenequation is
embedded in each formulation. It is found that the spurious eigenvalue for the annular plate is the
true eigenvalue of the associated interior problem with an inner radius of the annular domain. Also,
we provide three methods (SVD updating technique, Burton and Miller method and CHIEF method)
to suppress the occurrence of the spurious eigenvalues. Several examples were demonstrated to check
the validity of the formulations. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the eigenproblems, either the real-part or imaginary-part BEM instead of complex-valued
BEM results in spurious eigenequations. Tai and Shaw [1] first employed BEM to solve mem-
brane vibration using a complex-valued kernel. De Mey [2, 3] and Hutchinson and Wong [4, 5]
employed only the real-part kernel to solve the membrane and plate vibrations, free of the
complex-valued computation in sacrifice of occurrence of spurious eigenequations. Wong and
Hutchinson [4] have used a direct BEM for solving plate vibration involving displacement,
slope, moment and shear force. They were able to obtain eigenvalues for the clamped plates
by employing only the real-part BEM with obvious computational gains. However, this saving
leads to the spurious eigenvalues in addition to the true ones for free vibration analysis. This is
the reason why Chen and his coworkers have developed many systematic techniques, e.g. dual
formulation, domain partition, SVD updating technique [6], CHEEF method [7], for sorting
out the true and the spurious eigenvalues. Niwa et al. [8] also stated that ‘One must take
care to use the complete Green’s function for outgoing waves, as attempts to use just the real
(singular) or imaginary (regular) part separately will not provide the complete spectrum’. As
quoted from the reply of Hutchinson [9], this comment is not correct since the real-part or
imaginary-part BEM does not lose any true eigenvalue. The reason is that the real-part and
imaginary-part kernels satisfy the Hilbert transform pair. They are not fully independent. To
use both parts, real and imaginary kernels may not be economical. Complete eigenspectrum is
imbedded in either one, real or imaginary-part kernel. The Hilbert transform is the constraint in
the frequency domain corresponding to the causal effect in the time-domain fundamental solu-
tion. Tai and Shaw [1] claimed that spurious eigenvalues are not present if the complex-valued
kernel is employed for the eigenproblem. However, it is true only for the case of problem with
a simply connected domain. For multiply connected problems, spurious eigenvalues still appear
even though the complex-valued BEM is utilized. This finding and the treatment for spurious
eigenvalues have been verified in the membrane and acoustic problems [10, 11]. The spurious
eigenvalues occurs in two aspects: one is for the simply connected eigenproblem by using the
real-part or imaginary-part BEM; the other is for the multiply connected eigenproblem even
though the complex-valued BEM is utilized.

In this paper, the eigenproblem for the annular plate is solved by using the boundary integral
equation method (BIEM) as well as the boundary element method (BEM). The true and spurious
eigenequations are derived by using the complex-valued BEM. The occurring mechanism of the
spurious eigenequation for the plate eigenproblem in each formulation is studied analytically in
both the continuous and discrete models. Three alternatives, SVD updating technique, Burton
and Miller method and CHIEF method are utilized to suppress the occurrence of the spurious
eigenvalues. Plates subject to three types of boundary conditions, clamped, simply supported
and free boundary conditions, are demonstrated. Analytical derivations and numerical results
are illustrated to check the validity of the present formulations.

2. BOUNDARY INTEGRAL FORMULATION AND BOUNDARY ELEMENT
METHOD FOR PLATE EIGENPROBLEMS

The governing equation for the free flexural vibration of a uniform thin plate is written as
follows:

∇4u(x) = �4u(x), x ∈ � (1)
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where u is the lateral displacement, �4 = �2�0h/D, � is the frequency parameter, � is the
circular frequency, �0 is the surface density, D is the flexural rigidity expressed as D = Eh3/

[12(1 − �2)] in terms of Young’s modulus E, the Poisson ratio � and the plate thickness h,
and � is the domain. The integral equations for the domain point can be derived from the
Rayleigh–Green identity [12] as follows:

u(x) = −
∫

B

U(s, x)v(s) dB(s) +
∫

B

�(s, x)m(s) dB(s)

−
∫

B

M(s, x)�(s) dB(s) +
∫

B

V (s, x)u(s) dB(s), x ∈ � (2)

�(x) = −
∫

B

U�(s, x)v(s) dB(s) +
∫

B

��(s, x)m(s) dB(s)

−
∫

B

M�(s, x)�(s) dB(s) +
∫

B

V�(s, x)u(s) dB(s), x ∈ � (3)

m(x) = −
∫

B

Um(s, x)v(s) dB(s) +
∫

B

�m(s, x)m(s) dB(s)

−
∫

B

Mm(s, x)�(s) dB(s) +
∫

B

Vm(s, x)u(s) dB(s), x ∈ � (4)

v(x) = −
∫

B

Uv(s, x)v(s) dB(s) +
∫

B

�v(s, x)m(s) dB(s)

−
∫

B

Mv(s, x)�(s) dB(s) +
∫

B

Vv(s, x)u(s) dB(s), x ∈ � (5)

where B is the boundary, u, �, m and v mean the displacement, slope, normal moment, effective
shear force, s and x are the source and field points, respectively, U, �, M and V kernel
functions will be elaborated on later. The kernel function U(s, x) is the fundamental solution
which satisfies

∇4U(s, x) − �4U(s, x) = �(x − s) (6)

where �(x − s) is the Dirac-delta function. Considering the two singular solutions (Y0(�r)

and K0(�r) [13], which are the zeroth-order of the second-kind Bessel and modified Bessel
functions, respectively) and two regular solutions (J0(�r) and I0(�r), which are the zeroth-
order of the first-kind Bessel and modified Bessel functions, respectively) in the fundamental
solution, we have

U(s, x) = 1

8�2

[
(Y0(�r) + iJ0(�r)) + 2

�
(K0(�r) + iI0(�r))

]
(7)
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where r ≡ |s−x| and i2 = −1. The other three kernels, �(s, x), M(s, x) and V (s, x), are defined
as follows:

�(s, x) =K�(U(s, x)) (8)

M(s, x) =Km(U(s, x)) (9)

V (s, x) =Kv(U(s, x)) (10)

where K�(·), Km(·) and Kv(·) mean the operators defined by

K�(·) ≡ �(·)
�n

(11)

Km(·) ≡ �∇2(·) + (1 − �)
�2

(·)
�n2

(12)

Kv(·) ≡ �∇2(·)
�n

+ (1 − �)
�
�t

[(
�2

(·)
�n�t

)]
(13)

where �
�n

and �
�t

are the normal and tangential derivatives, respectively. The displacement,
slope, normal moment and effective shear force are derived by

�(x) =K�(u(x)) (14)

m(x) =Km(u(x)) (15)

v(x) =Kv(u(x)) (16)

Once the field point x locates outside the interested domain, the null-field BIEs of the direct
method in Equations (2)–(5) yield

0 = −
∫

B

U(s, x)v(s) dB(s) +
∫

B

�(s, x)m(s) dB(s)

−
∫

B

M(s, x)�(s) dB(s) +
∫

B

V (s, x)u(s) dB(s), x ∈ �e (17)

0 = −
∫

B

U�(s, x)v(s) dB(s) +
∫

B

��(s, x)m(s) dB(s)

−
∫

B

M�(s, x)�(s) dB(s) +
∫

B

V�(s, x)u(s) dB(s), x ∈ �e (18)
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0 = −
∫

B

Um(s, x)v(s) dB(s) +
∫

B

�m(s, x)m(s) dB(s)

−
∫

B

Mm(s, x)�(s) dB(s) +
∫

B

Vm(s, x)u(s) dB(s), x ∈ �e (19)

0 = −
∫

B

Uv(s, x)v(s) dB(s) +
∫

B

�v(s, x)m(s) dB(s)

−
∫

B

Mv(s, x)�(s) dB(s) +
∫

B

Vv(s, x)u(s) dB(s), x ∈ �e (20)

where �e is the complementary domain. Although the null-field BIEs are not singular due
to x �= s, they are indeed used for the point x near the boundary by using the appropriate
forms of degenerate kernels in real computations. Improper integrals can be avoided by using
the appropriate expressions of degenerate kernels.

3. ANALYTICAL DERIVATION OF THE TRUE AND SPURIOUS EIGENEQUATIONS
OF AN ANNULAR PLATE IN BIEM (CONTINUOUS SYSTEM)

AND BEM (DISCRETE SYSTEM)

3.1. Continuous system for BIEM

Case 1: Annular plate clamped on both the outer and inner boundaries (C–C).
We consider an annular plate clamped on the outer circle B1 (u1 = 0 and �1 = 0) and the inner
circle B2 (u2 = 0 and �2 = 0), where u1, �1, u2 and �2 are the displacement and slope on the
B1 and B2, respectively. The radii of the outer and inner circles are a and b, respectively.
The moment and shear force, m1(s), m2(s), v1(s) and v2(s), along the circular boundary can
be expanded into the Fourier series by

m1(s) =
∞∑

n=0
(pcc

1,n cos(n�̄) + qcc
1,n sin(n�̄)), s ∈ B1 (21)

m2(s) =
∞∑

n=0
(pcc

2,n cos(n�̄) + qcc
2,n sin(n�̄)), s ∈ B2 (22)

v1(s) =
∞∑

n=0
(acc

1,n cos(n�̄) + bcc
1,n sin(n�̄)), s ∈ B1 (23)

v2(s) =
∞∑

n=0
(acc

2,n cos(n�̄) + bcc
2,n sin(n�̄)), s ∈ B2 (24)

where the superscript ‘cc’ denotes the clamped–clamped case, �̄ is the angle on the circu-
lar boundary, acc

i,n, bcc
i,n, pcc

i,n and qcc
i,n (i = 1, 2) are the unknown Fourier coefficients on

Bi (i = 1, 2). When the null-field point locates near B+
1 , substitution of Equations (21)–(24)
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into Equations (17) and (18) yields

0 = −
∫

B1

U(s, x)

[ ∞∑
n=0

(acc
1,n cos(n�̄) + bcc

1,n sin(n�̄))

]
dB(s)

−
∫

B2

U(s, x)

[ ∞∑
n=0

(acc
2,n cos(n�̄) + bcc

2,n sin(n�̄))

]
dB(s)

+
∫

B1

�(s, x)

[ ∞∑
n=0

(pcc
1,n cos(n�̄) + qcc

1,n sin(n�̄))

]
dB(s)

+
∫

B2

�(s, x)

[ ∞∑
n=0

(pcc
2,n cos(n�̄) + qcc

2,n sin(n�̄))

]
dB(s), x → B+

1 (25)

0 = −
∫

B1

U�(s, x)

[ ∞∑
n=0

(acc
1,n cos(n�̄) + bcc

1,n sin(n�̄))

]
dB(s)

−
∫

B2

U�(s, x)

[ ∞∑
n=0

(acc
2,n cos(n�̄) + bcc

2,n sin(n�̄))

]
dB(s)

+
∫

B1

��(s, x)

[ ∞∑
n=0

(pcc
1,n cos(n�̄) + qcc

1,n sin(n�̄))

]
dB(s)

+
∫

B2

��(s, x)

[ ∞∑
n=0

(pcc
2,n cos(n�̄) + qcc

2,n sin(n�̄))

]
dB(s), x → B+

1 (26)

The kernels in Equations (25) and (26) must be carefully chosen using the interior and exterior
expressions of degenerate kernels. This is the key to avoid the improper integrals. When the
null-field point locates near B−

2 , substitution of Equations (21)–(24) into Equations (17) and (18)
yields

0 = −
∫

B1

U(s, x)

[ ∞∑
n=0

(acc
1,n cos(n�̄) + bcc

1,n sin(n�̄))

]
dB(s)

−
∫

B2

U(s, x)

[ ∞∑
n=0

(acc
2,n cos(n�̄) + bcc

2,n sin(n�̄))

]
dB(s)

+
∫

B1

�(s, x)

[ ∞∑
n=0

(pcc
1,n cos(n�̄) + qcc

1,n sin(n�̄))

]
dB(s)

+
∫

B2

�(s, x)

[ ∞∑
n=0

(pcc
2,n cos(n�̄) + qcc

2,n sin(n�̄))

]
dB(s), x → B−

2 (27)

0 = −
∫

B1

U�(s, x)

[ ∞∑
n=0

(acc
1,n cos(n�̄) + bcc

1,n sin(n�̄))

]
dB(s)

−
∫

B2

U�(s, x)

[ ∞∑
n=0

(acc
2,n cos(n�̄) + bcc

2,n sin(n�̄))

]
dB(s)
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+
∫

B1

��(s, x)

[ ∞∑
n=0

(pcc
1,n cos(n�̄) + qcc

1,n sin(n�̄))

]
dB(s)

+
∫

B2

��(s, x)

[ ∞∑
n=0

(pcc
2,n cos(n�̄) + qcc

2,n sin(n�̄))

]
dB(s), x → B−

2 (28)

Similarly, Equations (27) and (28) are free of singular integrals by choosing the appropriated
kernels of degenerate kernels. The kernel functions, U(s, x),�(s, x), U�(s, x) and ��(s, x),
can be expressed by using the expansion formulae,

Y0(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y i
0(�r) =

∞∑
m=−∞

Ym(��̄)Jm(��) cos(m(�̄ − �)), �̄��

Y e
0 (�r) =

∞∑
m=−∞

Ym(��)Jm(��̄) cos(m(�̄ − �)), �>�̄

(29)

K0(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K i
0(�r) =

∞∑
m=−∞

Km(��̄)Im(��) cos(m(�̄ − �)), �̄��

Ke
0(�r) =

∞∑
m=−∞

Km(��)Im(��̄) cos(m(�̄ − �)), �>�̄

(30)

J0(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J i
0(�r) =

∞∑
m=−∞

Jm(��̄)Jm(��) cos(m(�̄ − �)), �̄��

J e
0 (�r) =

∞∑
m=−∞

Jm(��)Jm(��̄) cos(m(�̄ − �)), �>�̄

(31)

I0(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I i
0(�r) =

∞∑
m=−∞

(−1)mIm(��̄)Im(��) cos(m(�̄ − �)), �̄��

I e
0 (�r) =

∞∑
m=−∞

(−1)mIm(��)Im(��̄) cos(m(�̄ − �)), �>�̄

(32)

where Jm and Im denote the mth-order Bessel and modified Bessel functions of the first kind,
Ym and Km denote the mth-order Bessel and modified Bessel functions of the second kind. The
superscripts ‘i’ and ‘e’ denote the interior point (�̄>�) and the exterior point (�̄<�), s = (�̄, �̄)

and x = (�, �) are the polar coordinates of s and x, respectively. Similarly, the other kernels can
be expanded into degenerate forms. By using the degenerate kernels into Equations (25)–(28)
and by employing the orthogonality condition of the Fourier series, the Fourier coefficients acc

i,n
and pcc

i,n (i = 1, 2) satisfy

[TMcc
n ]4×4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

acc
1,n

acc
2,n

pcc
1,n

pcc
2,n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

4×1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

0

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4×1

(33)
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For the existence of non-trivial solution for the generalized coefficients of acc
i,n, pcc

i,n, bcc
i,n

and qcc
i,n (i = 1, 2), the matrix has a zero determinant, i.e.

det[TMcc
n ] = 0 (34)

By using the properties of the determinant, we have

det[TMcc
n ] = C1 det([Su�

n ][T cc
n ]), C1 is a constant (35)

where

[Su�
n ]4×4 =

⎡
⎢⎢⎢⎢⎣

(Yn(�a) + iJn(�a)) 0 (Kn(�a) + iIn(�a)) 0

iJn(�b) Jn(�b) iIn(�b) In(�b)

(Y ′
n(�a) + iJ ′

n(�a)) 0 (K ′
n(�a) + iI ′

n(�a)) 0

iJ ′
n(�b) J ′

n(�b) iI ′
n(�b) I ′

n(�b)

⎤
⎥⎥⎥⎥⎦

4×4

(36)

and

[T cc
n ]4×4 =

⎡
⎢⎢⎢⎢⎣

Jn(�a) Jn(�b) J ′
n(�a) J ′

n(�b)

Yn(�a) Yn(�b) Y ′
n(�a) Y ′

n(�b)

In(�a) In(�b) I ′
n(�a) I ′

n(�b)

Kn(�a) Kn(�b) K ′
n(�a) K ′

n(�b)

⎤
⎥⎥⎥⎥⎦

4×4

(37)

It is noted that the matrix [T cc
n ] denotes the matrix of true eigenequation for the C–C case and

the matrix [Su�
n ] denotes the matrix of spurious eigenequation in the u, � formulation. Zero

determinant in Equation (35) implies that the eigenequation is

det([Su�
n ][T cc

n ]) = 0, n = 0, ±1, ±2, . . . , ±(N − 1), N (38)

After comparing with the analytical solution for the annular plate [14], the former matrix [Su�
n ]

in Equation (38) results in the spurious eigenequation while the latter matrix [T cc
n ] results in

the true eigenequation. The spurious eigenequation in Equation (36) will be elaborated on later.

Case 2: Annular plate simply supported on both the outer and inner boundaries.
Following the same procedure of case 1, we have

det[TMss
n ] = C2 det([Su�

n ][T ss
n ]), C2 is a constant (39)

where

[T ss
n ]4×4 =

⎡
⎢⎢⎢⎢⎢⎣

Jn(�a) Jn(�b) 	J
n (�a) 	J

n (�b)

Yn(�a) Yn(�b) 	Y
n (�a) 	Y

n (�b)

In(�a) In(�b) 	I
n(�a) 	I

n(�b)

Kn(�a) Kn(�b) 	K
n (�a) 	K

n (�b)

⎤
⎥⎥⎥⎥⎥⎦

4×4

(40)
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in which 	J
n (·), 	Y

n (·), 	I
n(·) and 	K

n (·) are listed in Appendix A. It is noted that the matrix [T ss
n ]

denotes the matrix of true eigenequation for the S–S case. Zero determinant in Equation (39)
implies that the eigenequation is

det([Su�
n ][T ss

n ]) = 0, n = 0, ±1, ±2, . . . , ±(N − 1), N (41)

After comparing with the analytical solution for the annular plate [14], the former matrix [Su�
n ]

in Equation (41) is the same as Equation (36) which results in the spurious eigenequation
while the latter matrix [T ss

n ] results in the true eigenequation.

Case 3: Annular plate free on both the outer and inner boundaries.
Similarly, we have

det[TMff
n ] = C3 det([Su�

n ][T ff
n ]), C3 is a constant (42)

where

[T ff
n ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	J
n (�a) 	J

n (�b) 
J
n (�a) + (1 − �)

a
�J
n (�a) 
J

n (�b) + (1 − �)

b
�J
n (�b)

	Y
n (�a) 	Y

n (�b) 
Y
n (�a) + (1 − �)

a
�Y
n (�a) 
Y

n (�b) + (1 − �)

b
�Y
n (�b)

	I
n(�a) 	I

n(�b) 
I
n(�a) + (1 − �)

a
�I
n(�a) 
I

n(�b) + (1 − �)

b
�I
n(�b)

	K
n (�a) 	K

n (�b) 
K
n (�a) + (1 − �)

a
�K
n (�a) 
K

n (�b) + (1 − �)

b
�K
n (�b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

in which 
J
n (·), 
Y

n (·), 
I
n(·), 
K

n (·), �J
n (·), �Y

n (·), �I
n(·) and �K

n (·) are listed in Appendix A. It
is noted that the matrix [T ff

n ] denotes the matrix of true eigenequation for the F–F case. Zero
determinant in Equation (42) implies that the eigenequation is

det([Su�
n ][T ff

n ]) = 0, n = 0, ±1, ±2, . . . , ±(N − 1), N (44)

After comparing with the analytical solution for the annular plate [14], the former matrix [Su�
n ]

in Equation (44) is the same as Equation (36) results in the spurious eigenequation while the
latter matrix [T ff

n ] results in the true eigenequation.

3.2. Discrete system for BEM

Case 1: Annular plate clamped on both the outer and inner boundaries.
When the outer and inner boundaries are both uniformly discretized into 2N constant elements,
respectively, Equations (25) and (26) by using the complex-valued BEM can be rewritten as[

U11 U12

U21 U22

]{
v1

v2

}
+
[

�11 �12

�21 �22

]{
m1

m2

}
=
{

0

0

}
(45)

where m1, v1, m2 and v2 are the column vectors of the normal moment and effective shear
force on B1 and B2 with a dimension 2N × 1, the matrices [Uij ] and [�ij ] mean the influence
matrices of U and � kernels which are obtained by collocating the field and source points

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:236–263



FREE VIBRATIONS OF ANNULAR PLATES 245

on Bi and Bj with a dimension 2N × 2N , respectively. Similarly, Equations (27) and (28) can
be rewritten as [

U11� U12�

U21� U22�

]{
v1

v2

}
+
[

�11� �12�

�21� �22�

]{
m1

m2

}
=
{

0

0

}
(46)

where the matrices [Uij�] and [�ij�] mean the influence matrices of the U� and �� kernels
which are obtained by locating the field and source points on Bi and Bj with a dimension
of 2N by 2N , respectively. By assembling Equations (45) and (46) together, we have

[SMcc]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

v2

m1

m2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= {0} (47)

where the superscript ‘cc’ denotes the clamped–clamped case and

[SMcc] =

⎡
⎢⎢⎢⎢⎣

U11 U12 �11 �12

U21 U22 �21 �22

U11� U11� �11� �12�

U21� U22� �21� �22�

⎤
⎥⎥⎥⎥⎦

8N×8N

(48)

For the existence of non-trivial solution, the matrix must have a zero determinant, i.e.

det[SMcc] = 0 (49)

Since the rotation symmetry is preserved for an annular boundary, the influence
matrices for the discrete system are found to be the circulants. The eigenvalues (�[U11]

� , �[U12]
� ,

�[�11]
� , �[�12]

� , �[U21]
� , �[U22]

� , �[�21]
� , �[�22]

� , [U11]
� , [U12]

� , [�11]
� , [�12]

� , [U21]
� , [U22]

� , [�21]
�

and [�22]
� ) of the sixteen influence matrices ([U11], [U12], [�11], [�12], . . . , [�21�]

and [�22�]) for the discrete system can be obtained by using the property of the circu-
lant. By extending the relationship and employing the properties of the determinant [6, 7], we
have

det[SMcc] =
N∏

�=−(N−1)

det

⎡
⎢⎢⎢⎢⎢⎢⎣

�[U11]
� �[U12]

� �[�11]
� �[�12]

�

�[U21]
� �[U22]

� �[�21]
� �[�22]

�

[U11]
� [U12]

� [�11]
� [�12]

�

[U21]
� [U22]

� [�21]
� [�22]

�

⎤
⎥⎥⎥⎥⎥⎥⎦

4×4

(50)

By employing all the eigenvalues of the sixteen influence matrices for Equation (50), decom-
position of the matrix yields

det[SMcc] = C4

N∏
�=−(N−1)

det([Su�
� ][T cc

� ]), C4 is a constant (51)
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where

[Su�
� ]4×4 =

⎡
⎢⎢⎢⎢⎣

(Y�(�a) + iJ�(�a)) 0 (K�(�a) + iI�(�a)) 0

iJ�(�b) J�(�b) iI�(�b) I�(�b)

(Y ′
�(�a) + iJ ′

�(�a)) 0 (K ′
�(�a) + iI ′

�(�a)) 0

iJ ′
�(�b) J ′

�(�b) iI ′
�(�b) I ′

�(�b)

⎤
⎥⎥⎥⎥⎦

4×4

(52)

and

[T cc
� ]4×4 =

⎡
⎢⎢⎢⎢⎣

J�(�a) J�(�b) J ′
�(�a) J ′

�(�b)

Y�(�a) Y�(�b) Y ′
�(�a) Y ′

�(�b)

I�(�a) I�(�b) I ′
�(�a) I ′

�(�b)

K�(�a) K�(�b) K ′
�(�a) K ′

�(�b)

⎤
⎥⎥⎥⎥⎦

4×4

(53)

It is noted that the matrix [T cc
� ] denotes the matrix of true eigenequation for the C–C case and

the matrix [Su�
� ] denotes the matrix of spurious eigenequation in the u, � formulation. Zero

determinant in Equation (51) implies that the eigenequation is

det([Su�
� ][T cc

� ]) = 0, � = 0, ±1, ±2, . . . , ±(N − 1), N (54)

After comparing with the analytical solution for the annular plate [14], the former matrix [Su�
� ]

in Equation (54) results in the spurious eigenequation while the latter matrix [T cc
� ] results in

the true eigenequation. The results of Equation (53) in the discrete system match well with
the former one in the continuous system.

Case 2: Annular plate simply supported on both the outer and inner boundaries.
Following the same procedure of case 1, we have

[SMss] =

⎡
⎢⎢⎢⎢⎣

U11 U12 M11 M12

U21 U22 M21 M22

U11� U11� M11� M12�

U21� U22� M21� M22�

⎤
⎥⎥⎥⎥⎦

8N×8N

(55)

where the superscript ‘ss’ denotes the simply supported–simply supported case. Based on the
theory of circulant, we have

det[SMss] = C5

N∏
�=−(N−1)

det([Su�
� ][T ss

� ]), C5 is a constant (56)

where

[T ss
� ]4×4 =

⎡
⎢⎢⎢⎢⎢⎣

J�(�a) J�(�b) 	J
� (�a) 	J

� (�b)

Y�(�a) Y�(�b) 	Y
� (�a) 	Y

� (�b)

I�(�a) I�(�b) 	I
�(�a) 	I

�(�b)

K�(�a) K�(�b) 	K
� (�a) 	K

� (�b)

⎤
⎥⎥⎥⎥⎥⎦

4×4

(57)
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It is noted that the matrix [T ss
� ] denotes the matrix of true eigenequation for the simply

supported–simply supported case. Zero determinant in Equation (56) implies that the
eigenequation is

det([Su�
� ][T ss

� ]) = 0, � = 0, ±1, ±2, . . . , ±(N − 1), N (58)

The results of Equation (57) in the discrete system match well with the former one in the
continuous system.

Case 3: Annular plate free on both the outer and inner boundaries.
Similarly, we have

[SMff ] =

⎡
⎢⎢⎢⎢⎣

M11 M12 V 11 V 12

M21 M22 V 21 V 22

M11� M11� V 11� V 12�

M21� M22� V 21� V 22�

⎤
⎥⎥⎥⎥⎦

8N×8N

(59)

where the superscript ‘ff’ denotes the free–free case. Also, we have

det[SMff ] = C6

N∏
�=−(N−1)

det([Su�
� ][T ff

� ]), C6 is a constant (60)

where

[T ff
� ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	J
� (�a) 	J

� (�b) 
J
� (�a) + (1 − �)

a
�J
� (�a) 
J

� (�b) + (1 − �)

b
�J
� (�b)

	Y
� (�a) 	Y

� (�b) 
Y
� (�a) + (1 − �)

a
�Y
� (�a) 
Y

� (�b) + (1 − �)

b
�Y
� (�b)

	I
�(�a) 	I

�(�b) 
I
�(�a) + (1 − �)

a
�I
�(�a) 
I

�(�b) + (1 − �)

b
�I
�(�b)

	K
� (�a) 	K

� (�b) 
K
� (�a) + (1 − �)

a
�K
� (�a) 
K

� (�b) + (1 − �)

b
�K
� (�b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×4

(61)

It is noted that the matrix [T ff
� ] denotes the matrix of true eigenequation for the F–F case.

Zero determinant in Equation (60) implies that the eigenequation is

det([Su�
� ][T ff

� ]) = 0, � = 0, ±1, ±2, . . . , ±(N − 1), N (62)

The results of Equation (61) in the discrete system match well with the former one in the
continuous system.

The proof can be easily extended to problems subject to the different combinations of
boundary conditions on the outer boundary and inner boundary. All the results for the annular
plate subject to different boundary conditions are shown in Table I.
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Table I. True eigenequations for the annular plate.

Cases True eigenequation [Tn]

C–C

⎡
⎢⎢⎢⎢⎢⎣

Jn(�a) Jn(�b) J ′
n(�a) J ′

n(�b)

Yn(�a) Yn(�b) Y ′
n(�a) Y ′

n(�b)

In(�a) In(�b) I ′
n(�a) I ′

n(�b)

Kn(�a) Kn(�b) K ′
n(�a) K ′

n(�b)

⎤
⎥⎥⎥⎥⎥⎦

S–S

⎡
⎢⎢⎢⎢⎢⎢⎣

Jn(�a) Jn(�b) 	J
n (�a) 	J

n (�b)

Yn(�a) Yn(�b) 	Y
n (�a) 	Y

n (�b)

In(�a) In(�b) 	I
n(�a) 	I

n(�b)

Kn(�a) Kn(�b) 	K
n (�a) 	K

n (�b)

⎤
⎥⎥⎥⎥⎥⎥⎦

F–F

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	J
n (�a) 	J

n (�b) 
J
n (�a) + 1 − �

b
�J
n (�a) 
J

n (�b) + 1 − �
b

�J
n (�b)

	Y
n (�a) 	Y

n (�b) 
Y
n (�a) + 1 − �

b
�Y
n (�a) 
Y

n (�b) + 1 − �
b

�Y
n (�b)

	I
n(�a) 	I

n(�b) 
I
n(�a) + 1 − �

b
�I
n(�a) 
I

n(�b) + 1 − �
b

�I
n(�b)

	K
n (�a) 	K

n (�b) 
K
n (�a) + 1 − �

b
�K
n (�a) 
K

n (�b) + 1 − �
b

�K
n (�b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.3. Study of the spurious eigenequation in the [S] matrix

After comparing Equation (54) with Equations (58) and (62) in the discrete system or comparing
the results of Equation (38) with Equations (41) and (44) in the continuous system for the
annular plate, the same spurious eigenequation ([Su�

n ] = 0) is embedded in the u, � formulation
no matter what the boundary condition is. By using the cofactor of the matrix [Su�

n ] to simplify
the zero determinant of Equation (36) for the spurious eigenequation, we have

det[Su�
n ]4×4 = det([Sau�

n ][Sbu�
n ]) (63)

where

[Sau�
n ] =

[
(Yn(�a) + iJn(�a)) (Kn(�a) + iIn(�a))

(Y ′
n(�a) + iJ ′

n(�a)) (K ′
n(�a) + iI ′

n(�a))

]
2×2

(64)

and

[Sbu�
n ] =

[
Jn(�b) In(�b)

J ′
n(�b) I ′

n(�b)

]
2×2

(65)

It is found that the determinant of the former matrix [Sau�
n ] in Equation (64) is never zero for

any �. The spurious eigenequation is the zero determinant of the matrix [Sbu�
n ] in Equation (65)
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Table II. Spurious eigenequations for the annular plate.

Boundary condition of the
Formulation [Sbn] simply connected plate

u, � formulation

[
Jn(�b) In(�b)

�(J ′
n(�b)) �(I ′

n(�b))

]
u = 0, �= 0

u, m formulation

[
Jn(�b) In(�b)

	J
n (�b) 	I

n(�b)

]
u = 0, m = 0

u, v formulation

⎡
⎢⎣

Jn(�b) In(�b)[

J

n (�b) + (1 − �)
b

�J
n (�b)

] [

I

n(�b) + (1 − �)
b

�I
n(�b)

]
⎤
⎥⎦ u = 0, v = 0

�, m formulation

[
�J ′

n(�b) �I ′
n(�b)

	J
n (�b) 	I

n(�b)

]
�= 0, m = 0

�, v formulation

⎡
⎢⎣

�J ′
n(�b) �I ′

n(�b)[

J

n (�b) + (1 − �)
b

�J
n (�b)

] [

I

n(�b) + (1 − �)
b

�I
n(�b)

]
⎤
⎥⎦ �= 0, v = 0

m, v formulation

⎡
⎢⎣

	J
n (�b) 	I

n(�b)[

J

n (�b) + (1 − �)
b

�J
n (�b)

] [

I

n(�b) + (1 − �)
b

�I
n(�b)

]
⎤
⎥⎦ m = 0, v = 0

which only relates to the inner radius b. It is interesting that the zero determinant of the [Sbu�
n ]

in the u, � formulation results in the true eigenequation of a clamped plate with a radius b.
The spurious eigenvalues parasitizing in the u, � formulation depend on the radius b which is
the inner circle of the annular domain. In fact, the multiply connected problem can be seen as
a superposition of two problems, one is an interior problem with the boundary, B2, and the
other is an exterior problem with the boundary, B1. The source which causes the appearance
of the spurious eigenvalues stems from the exterior problem with the inner boundary even
though the complex-valued kernels are employed. This finding for the plate is similar to that
of membrane vibration and acoustics [10, 11].

Since any two equations in the plate formulation (Equations (17)–(20)) can be chosen, 6(C4
2)

options of the formulation can be considered. All the results of the spurious eigenequation are
shown in Table II. It is found that spurious eigenequation for the annular case is the true
eigenequation of the circular plate with radius b. The occurrence of spurious eigenequation
only depends on the adopted formulation instead of the specified boundary condition. True
eigenequation depends on the specified boundary condition instead of the formulation.
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4. TREATMENT OF THE SPURIOUS EIGENVALUES FOR AN ANNULAR PLATE
USING BIEM AND BEM

4.1. SVD updating technique

In the discrete system, the approach to detect the true eigensolution is the criterion of satisfying
all Equations (17)–(20) at the same time by using the complex-valued BEM. After rearranging
the terms of Equations (17) and (18), we have

[SMcc
1 ] =

⎡
⎢⎢⎢⎢⎣

U11 U12 �11 �12

U21 U22 �21 �22

U11� U12� �11� �12�

U21� U22� �21� �22�

⎤
⎥⎥⎥⎥⎦ (66)

Similarly, Equations (19) and (20) yield

[SMcc
2 ] =

⎡
⎢⎢⎢⎢⎣

U11m U12m �11m �12m

U21m U22m �21m �22m

U11v U12v �11v �12v

U21v U22v �21v �22v

⎤
⎥⎥⎥⎥⎦ (67)

By using the SVD technique of updating term for the clamped case [11], we have

[C]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

v2

m1

m2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= {0} (68)

where

[C] =
[

SMcc
1

SMcc
2

]
16N×8N

(69)

Since the eigenequation is non-trivial, the rank of the matrix [C] must be smaller than 8N ,
the 8N singular values for the matrix [C] must be zero at least. We can find that the determinant
of the matrix [C]T[C] can be decomposed into the summation of the square determinant in
the C8

4 matrices. The only possibility for the zero determinant of the matrix [C]T[C] occurs
when the C8

4 terms are all zeros at the same time. After a careful check for all the matrices,
we find that the true eigenequation [T cc

� ] is simultaneously embedded in the C8
4 matrices. This

indicates that only the true eigenequation of the clamped–clamped annular plate is sorted out
in the SVD updating matrix since the true eigenequation is simultaneously embedded in the
six complex-valued formulations. The result matches well with the former one in the discrete
system, respectively.
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4.2. Burton and Miller method

By combining Equations (66) and (67) with an imaginary number in the complex-valued BEM,
we have

[[SMcc
1 ] + i[SMcc

2 ]]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

v2

m1

m2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= {0} (70)

By using the circulant and the decomposition technique, the determinant of the [SMcc
1 ] + i[SMcc

2 ]
is obtained

det[[SMcc
1 ] + i[SMcc

2 ]] =
N∏

�=−(N−1)

det([[Su�
� ] + i[Smv

� ]][T cc
� ]) (71)

Since the term [Su�
� ] + i[Smv

� ] is never zero for any �, we can obtain the true eigenval-
ues by using the complex-valued BEM in conjunction with the Burton and Miller concept.
Nevertheless, if we combine the u, � and m, v formulations or u, v and �, m formulations,
the method fails. The reason is that the u, v and �, m formulation have the same spu-
rious eigenequation. Only the combination of u, m and �, v complex-valued formulations
can obtain the true eigenvalues. All the explicit forms of the [Su�

� ] + i[Smv
� ] are shown

in Table III by using the complex-valued BEM. Since any two equations in the complex-
valued formulation result in the spurious eigenvalues, we can reconstruct the independent equa-
tion by employing the Burton and Miller concept. When we choose the appropriate combination,
the Burton and Miller method works well.

4.3. CHIEF method

By adding the point with a radius � for the null-field equation to solve the eigenproblem
of annular plate, we have two choices for the location of CHIEF point (�<b) or CHEEF
point (a<�). If the CHEEF point locates on the outer the domain (a<�), the CHEEF method
fails [11]. By moving the field point x to be outside the domain (�<b) for CHIEF points,
we have

[
UC1 UC2 �C1 �C2

UC1� UC2� �C1� �C2�

]
2NC×8N

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

v2

m1

m2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

8N×1

= {0}2Nc×1 (72)

where the index C denotes the CHIEF point in the null-field integral equation and the ma-
trix dimension Nc (�1) indicates the number of additional CHIEF points. The submatrices in
Equation (72) can be obtained by adding the influence row vectors resulted from the U, �, U�
and �� kernels due to the CHIEF point. Combining Equations (66) and (72) together to obtain
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Table III. The terms of [Sb1
n] + i[Sb2

n] for the annular plate by using the complex-valued BEM in
conjunction the Burton and Miller method.

[Sb1
n] + i[Sb2

n]

u, �
formulation

[
Jn(�b) In(�b)

�(J ′
n(�b)) �(I ′

n(�b))

]
+ i

⎡
⎢⎣ 	J

n (�b) 	I
n(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 − �)
b

�I
n(�b)

⎤
⎥⎦

u, m
formulation

[
Jn(�b) In(�b)

	J
n (�b) 	I

n(�b)

]
+ i

⎡
⎣ �J ′

n(�b) �I ′
n(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 + �)
b

�I
n(�b)

⎤
⎦

u, v
formulation

⎡
⎣ Jn(�b) In(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 − �)
b

�I
n(�b)

⎤
⎦+ i

[
�J ′

n(�b) �I ′
n(�b)

	J
n (�b) 	I

n(�b)

]

�, m
formulation

[
�J ′

n(�b) �I ′
n(�b)

	J
n (�b) 	I

n(�b)

]
+ i

⎡
⎣ Jn(�b) In(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 − �)
b

�I
n(�b)

⎤
⎦

�, v
formulation

⎡
⎣ �J ′

n(�b) �I ′
n(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 − �)
b

�I
n(�b)

⎤
⎦+ i

[
Jn(�b) In(�b)

	J
n (�b) 	I

n(�b)

]

m, v
formulation

⎡
⎢⎣ 	J

n (�b) 	I
n(�b)


J
n (�b) + (1 − �)

b
�J
n (�b) 
I

n(�b) + (1 − �)
b

�I
n(�b)

⎤
⎥⎦+ i

[
Jn(�b) In(�b)

�(J ′
n(�b)) �(I ′

n(�b))

]

the overdetermined system, we have

[C∗]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1

v2

m1

m2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8N×1

= {0}(8N+2NC)×1 (73)

where

[C∗] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11 U12 �11 �12

U21 U22 �21 �22

U11� U12� �11� �12�

U21� U22� �21� �22�
UC1 UC2 �C1 �C2

UC1� UC2� �C1� �C2�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8N+2NC)×8N

(74)

Therefore, an overdetermined system is obtained to filter out the spurious eigenvalues.
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5. NUMERICAL RESULTS AND DISCUSSIONS

An annular plate with the outer radius of 1 m (a =1 m) and the inner radius of 0.5 m (b = 0.5 m)

of B1 and B2, respectively, and the Poisson ratio � = 1/3 is considered. The outer and inner
boundaries are both uniformly discretized into ten constant elements, respectively.

Figures 1–3 show the determinant of [SM] versus the frequency parameter � for the three
cases of annular plate using the six complex-valued formulations. Both the true and spurious
eigenvalues occur simultaneously even though the complex-valued BEM is employed. After
comparing with (a)–(f) results for each figure, the same true eigenvalues are obtained no
matter what the adopted formulation is. It reconfirms that the true eigenvalues depends on the
specified boundary condition instead of the formulation. After selecting the formulation (e.g. u, �
formulation), the spurious eigenvalues (6.392, 9.222 and 11.810) occur at the positions which
satisfy the spurious eigenequation det|[Su�

n ]| = 0 in Equation (36) as shown in Figures 1(a), 2(a)
and 3(a). In order to distinguish the spurious eigenvalues, Figure 4(a)–(c) and 4(d)–(f) show the
determinant of [SM] versus � using the same formulation (4(a)–(c) for u, � formulation; 4(d)–(f)
for u, m formulation) to solve the plates subject to different boundary conditions. The numerical
results reconfirm that the occurrence of spurious eigenvalues only depends on the formulation
instead of the specified boundary condition.

The true eigenvalues (6.392, 9.222 and 11.810) for the circular clamped plate in Figure 5(a)
with a radius b = 0.5 m appears at the same positions of the spurious eigenvalues in
Figures 1(a), 2(a) and 3(a) when using the u, � complex-valued BEM for the annular plate. In
other words, the spurious eigenvalues embedded in each (C4

2) formulation for the annular plate
are corresponding to the associated true eigenvalues of the inner circular plate as shown in
Figure 5(a)–(f).

Treatment of the spurious eigenvalues
Figure 6(a) and (d) show the determinant of the [C]T[C] versus � for the F–F annular plate
using the complex-valued formulations in conjunction with the SVD technique of updating
term. It is found that all the spurious eigenvalues are filtered out and only the true eigenvalues
appear. Figure 6(b) and (e) show the determinant of the [SM] versus � for the F–F annular
plate using the six complex-valued formulations in conjunction with the Burton and Miller
concept. Only the combination of u, m and �, v formulation can obtain the true eigenvalues
in Figure 6(b) and (e) as predicted in Table III, since det([Sbum

n ] + i[Sb�v
n ]) cannot be zero.

Figure 6(c) show the minimum singular value �1 of the [C∗] versus � for the F–F annular
plate by using the u, � formulations in conjunction with the two CHIEF points. For Figure
6(c), the CHIEF points locate at (0.285, �/4) and (0.275, 29�/36), where the angle between
the two selected points is 5�/9. Similarly, Figure 6(f) show the minimum singular value �1 of
the [C∗] versus � for the F–F annular plate by using the u, m formulation in conjunction with
the two CHIEF points. The CHIEF points locate at (0.30, �/4) and (0.28, 29�/36), where the
angle between the two selected points is 5�/9. Good agreement is made by using the CHIEF
method. Only the true eigenvalues are obtained.

In general, all the cases result in the same spurious eigenvalues, once the formulation is
adopted no matter what the boundary condition is specified. All the numerical data of the true
eigenvalues are summarized in Table IV(a)–(c), and the eigenvalues agree well with the data
in References [14–16] to match our solution. However, the obtained eigenvalues according to
the Leissa’s eigenequation are not consistent to those in his book. The possible explanation is
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(a) (d)

(b) (e)

(c) (f)

Figure 1. The determinant of the [SMcc] versus the frequency parameter � for the C–C annular plate
using the six complex-valued formulations.
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Figure 2. The determinant of the [SMss] versus the frequency parameter � for the S–S annular plate
using the six complex-valued formulations.
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Figure 3. The determinant of the [SMff ] versus the frequency parameter � for the F–F annular plate
using the six complex-valued formulations.
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Figure 4. The determinant of the [SM] versus the frequency parameter � using the complex-valued
formulation (u, � or u, m formulation) to solve plates subject to different boundary conditions.
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Figure 5. The determinant of the [SM] versus the frequency parameter � using the
complex-valued formulation to solve plates subject to different boundary conditions for

the simply connected plate with a radius b.
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Figure 6. Three alternatives (SVD updating term, the Burton and Miller method and CHIEF method)
for the F–F annular plate using the complex-valued formulations.
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Table IV. True eigenvalues (�) for the annular plate (a = 1, b = 0.5 and � = 1/3).

� for values of n of

m 0 1 2 3 4 5

(a) True eigenvalues (�) for the C–C case (a = 1, b = 0.5)

0 9.447 9.499 9.660 9.945 10.370 10.940
1 15.694 15.739 15.873 16.098 16.415 16.827

(b) True eigenvalues (�) for the S–S case (a = 1, b = 0.5, �= 1/3)

0 6.325 6.463 6.861 7.480 8.269 9.180
1 12.592 12.669 12.895 13.265 13.767 14.391

(c) True eigenvalues (�) for the F–F case (a = 1, b = 0.5, �= 1/3)

0 3.037 4.115 2.050 3.355 4.557 5.704
1 9.603 9.800 5.541 6.854 8.139 9.429

n is the number of nodal diameters and m the number of nodal circles, not including
the boundary circle.

that the eigenequations in the Leissa’s book [14] for some cases was wrongly typed. Recently,
we have found the new edition of Leissa’s book [17] and the typing error has been corrected
to match our solution.

6. CONCLUSIONS

A complex-valued boundary integral equation has been formulated for the free vibration of
annular plate. The true and spurious eigenequations were derived analytically by using the
Fourier series, degenerate kernels and circulants in both the continuous system (BIEM) and
discrete system (BEM) while the eigenvalues were determined numerically. Since either two
equations in the plate formulation (4 equations) can be chosen, C4

2 (6) options can be considered.
The occurrence of spurious eigenequation only depends on the formulation instead of the
specified boundary condition, while the true eigenequation is independent of the formulation and
is relevant to the specified boundary condition. It is interesting that the spurious eigenequation of
annular plate eigenproblem by using the u, � formulation is found to be the true eigenequation
of clamped circular plate with a radius b which is the inner radius of the annular plate.
Several examples of plates were illustrated to check the validity of the present formulations.
Three alternatives (SVD updating technique, Burton and Miller method and the CHIEF method)
were adopted to suppress the occurrence of the spurious eigenvalues for the C–C, S–S and
F–F annular plates in the complex-valued BEM. Although the annular case lacks generality, it
leads significant insight into the occurring mechanism of true and spurious eigenequation for
multiply connected eigenproblems. It is also a great help to the researchers who may require
analytical explanation for the reason why spurious eigenvalues appear for the multiply connected
problems. The same algorithm in the discrete system can be applied to solve arbitrary-shaped
plates numerically without any difficulty; however, analytical derivation in the continuous and
discrete systems cannot be done as the annular case can.
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APPENDIX A: LIST OF THE COEFFICIENTS
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m(�a) = �2Y ′′
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1
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�Y ′
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)2
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]
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