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Abstract

In this paper, the spurious solution of characteristic equation for the eigenproblems of a circular plate is studied in the

continuous and discrete systems. Since any two boundary integral equations in the plate formulation (four equations) can

be chosen, 6ðC4
2Þ options are considered instead of only two approaches (single-layer and double-layer methods, or singular

and hypersingular equations). The occurring mechanism of the spurious solution for the circular plate in the imaginary-

part formulations is studied analytically. For the continuous system, degenerate kernels for the fundamental solution and

the Fourier series expansion for the boundary density are employed to derive the true and spurious solutions of

characteristic equation analytically. For the discrete system, the degenerate kernels for the fundamental solution and

circulants resulting from the circular boundary are employed to determine the spurious solution of characteristic equation.

It is found that true solution for characteristic equation depends on the specified boundary condition while spurious one is

embedded in each formulation. Also, we provide two methods (singular value decomposition updating technique and the

Burton and Miller method) to suppress the occurrence of the spurious eigenvalues. A general-purpose program of

imaginary-part boundary element method was developed for general cases. Several examples including circular and

noncircular cases were demonstrated to check the validity of the formulation.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

For the simply-connected problems of interior acoustics or membrane, either the real-part or imaginary-
part boundary element method (BEM) results in spurious solutions of characteristic equations. An analytical
study for the spurious eigenvalues of a circular membrane was done [1] when the real-part BEM is employed
to solve eigenproblem. De Mey [2,3], Yas’ko [4], Hutchinson and Wong [5–7] also employed only the real-part
kernel to solve the membrane and plate vibrations free of the complex-valued computation in sacrifice of
occurrence of spurious solutions. Wong and Hutchinson [8] have presented a direct BEM for plate vibration
involving displacement, slope, moment and shear force. They were able to obtain numerical results for
clamped plates by employing only the real-part BEM with obvious computational gains. However, this saving
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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leads to spurious eigenvalues in addition to true ones for free vibration analysis. One has to investigate the
mode shapes in order to identify and reject the spurious ones. Shaw [9] commented that using only the real-
part kernel was incorrect since the characteristic equation must satisfy the real-part and imaginary-part
equations at the same time. Hutchinson [10] replied that the claim of incorrectness was perhaps a little strong
since the real-part BEM does not miss any true eigenvalue although the solution is contaminated by spurious
ones according to numerical experiences. However, no proof was provided. Kuo et al. [1] and Chen et al. [11]
have proved the existence of spurious solution through a circular membrane for the real-part and imaginary-
part BEMs, respectively. If we usually need to look for the eigenmode as well as eigenvalue, the sorting for the
spurious solutions pay a small overhead by identifying the mode shapes. Chen et al. [12] commented that the
nodal line of spurious modes may be reasonable which could mislead the judgement of the true and spurious
ones, since the true and spurious modes may have the same nodal line in case of different eigenvalues. This is
the reason why Chen and his coworkers have developed several techniques, e.g., dual formulation [12], domain
partition [13], singular value decomposition (SVD) updating technique [14], combined Helemholtz exterior
equation formulation (CHEEF) method [15], for sorting out true and spurious eigenvalues. Niwa et al. [16]
also stated that ‘‘One must take care to use the complete Green’s function for outgoing waves, as attempts to
use only the real (singular) or imaginary (regular) part separately will not provide the complete spectrum’’. As
quoted from the reply of Hutchinson [10], this comment is not correct since the real-part BEM does not lose
any true eigenvalue. The reason is that the real-part and imaginary-part kernels satisfy the Hilbert transform
pair. They are not fully independent. To use both parts, real and imaginary kernels may be not economical in
computation. Complete eigenspectrum is imbedded in either real or imaginary-part kernel. The spurious
eigenvalues occur in two aspects: one is for the simply-connected eigenproblem by using the real-part or
imaginary-part BEM; the other is for the multiply-connected eigenproblem even though the complex-valued
BEM is utilized [17,18]. Based on the successful experiences for the eigenproblem of Laplace operator
(membrane or acoustics), we intend to study the eigenproblem of biharmonic operator (plate).

In this paper, the spurious solution for the eigenproblems of a circular plate will be studied analytically and
numerically. For saving the computational time and avoiding the singularity, we focus on the imaginary-part
BEM only. Since any two boundary integral equations in the plate formulation (four equations) are chosen,
6ðC4

2Þ options can be considered instead of only two approaches (single-layer and double-layer methods, or
singular and hypersingular equations) which are adopted for the eigenproblems of the membrane and
acoustics. The occurring mechanism of the spurious solution for the circular plate in each formulation will be
studied analytically in the continuous and discrete systems. Also, we will provide two methods (SVD updating
technique and the Burton and Miller method) to suppress the occurrence of the spurious eigenvalues for the
free vibration problems. Several examples, circular, rectangular and elliptical plates, will be demonstrated to
check the validity of the proposed formulation.
2. Boundary integral equation and BEM for the free vibration of simply-connected plate

The governing equation for free flexural vibration of a uniform thin plate as shown in Fig. 1 is written as

r4uðxÞ ¼ l4uðxÞ; x 2 O, (1)

where u is the lateral displacement, l4 ¼ o2r0h=D, l is the frequency parameter, o is the circular frequency, r0
is the surface density, D is the flexural rigidity expressed as D ¼ Eh3=12ð1� n2Þ in terms of Young’s modulus
E, the Poisson ratio n and the plate thickness h, and O is the domain of the thin plate. The integral equations
for the domain point can be derived from the Rayleigh–Green identity [19] as follows:

uðxÞ ¼ �

Z
B

Uðs;xÞvðsÞdBðsÞ þ

Z
B

Yðs;xÞmðsÞdBðsÞ

�

Z
B

Mðs;xÞyðsÞdBðsÞ þ

Z
B

V ðs;xÞuðsÞdBðsÞ; x 2 O, ð2Þ
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Fig. 1. Sketch of the problem. (a) Governing equation; (b) free flexural vibration.
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yðxÞ ¼ �
Z

B

Uyðs;xÞvðsÞdBðsÞ þ

Z
B

Yyðs;xÞmðsÞdBðsÞ

�

Z
B

Myðs; xÞyðsÞdBðsÞ þ

Z
B

Vyðs; xÞuðsÞdBðsÞ; x 2 O, ð3Þ

mðxÞ ¼ �

Z
B

Umðs; xÞvðsÞdBðsÞ þ

Z
B

Ymðs;xÞmðsÞdBðsÞ

�

Z
B

Mmðs; xÞyðsÞdBðsÞ þ

Z
B

Vmðs; xÞuðsÞdBðsÞ; x 2 O, ð4Þ

vðxÞ ¼ �

Z
B

Uvðs;xÞvðsÞdBðsÞ þ

Z
B

Yvðs;xÞmðsÞdBðsÞ

�

Z
B

Mvðs;xÞyðsÞdBðsÞ þ

Z
B

V vðs;xÞuðsÞdBðsÞ; x 2 O, ð5Þ

where B is the boundary, u, y, m and v mean the displacement, slope, normal moment, effective shear force, s

and x are the source and field points, respectively, U, Y, M and V kernel functions will be elaborated on later.
The kernel function Uðs;xÞ is the fundamental solution Ucðs;xÞ which satisfies

r4Ucðs;xÞ � l4Ucðs;xÞ ¼ �dðx� sÞ, (6)

where dðx� sÞ is the Dirac delta function. Considering the two singular solutions (Y 0ðlrÞ and K0ðlrÞ which are
the zeroth-order of second kind Bessel and modified Bessel functions, respectively) [8] and two regular
solutions (J0ðlrÞ and I0ðlrÞ, which are the zeroth-order of first kind Bessel and modified Bessel functions,
respectively) in the fundamental solution, we have

Ucðs;xÞ ¼
1

8l2
ðY 0ðlrÞ þ iJ0ðlrÞÞ þ

2

p
ðK0ðlrÞ þ iI0ðlrÞÞ

� �
, (7)

where r � js� xj and i2 ¼ �1. The other three kernels, Yðs; xÞ, Mðs;xÞ and V ðs;xÞ, are defined as follows:

Yðs;xÞ ¼KyðUðs;xÞÞ, (8)

Mðs;xÞ ¼KmðUðs; xÞÞ, (9)

V ðs;xÞ ¼KvðUðs;xÞÞ, (10)
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where Kyð�Þ, Kmð�Þ and Kvð�Þ mean the operators defined by

Kyð�Þ �
qð�Þ
qn

, (11)

Kmð�Þ � nr2ð�Þ þ ð1� nÞ
q2ð�Þ
qn2

, (12)

Kvð�Þ �
qr2ð�Þ

qn
þ ð1� nÞ

q
qt

q2ð�Þ
qnqt

� �� �
, (13)

where n and t are the normal vector and tangential vector, respectively. The operators Ky, Km and Kv can
be applied to Y, M and V kernels. The displacement, slope, normal moment and effective shear force are
derived by

yðxÞ ¼KyðuðxÞÞ, (14)

mðxÞ ¼KmðuðxÞÞ, (15)

vðxÞ ¼KvðuðxÞÞ. (16)

Once the field point x locates outside the domain, the null-field BIEs yield

0 ¼ �

Z
B

Uðs;xÞvðsÞdBðsÞ þ

Z
B

Yðs;xÞmðsÞdBðsÞ

�

Z
B

Mðs;xÞyðsÞdBðsÞ þ

Z
B

V ðs; xÞuðsÞdBðsÞ; x 2 Oe, ð17Þ

0 ¼ �

Z
B

Uyðs;xÞvðsÞdBðsÞ þ

Z
B

Yyðs; xÞmðsÞdBðsÞ

�

Z
B

Myðs;xÞyðsÞdBðsÞ þ

Z
B

V yðs;xÞuðsÞdBðsÞ; x 2 Oe, ð18Þ

0 ¼ �

Z
B

Umðs;xÞvðsÞdBðsÞ þ

Z
B

Ymðs;xÞmðsÞdBðsÞ

�

Z
B

Mmðs;xÞyðsÞdBðsÞ þ

Z
B

V mðs;xÞuðsÞdBðsÞ; x 2 Oe, ð19Þ

0 ¼ �

Z
B

Uvðs;xÞvðsÞdBðsÞ þ

Z
B

Yvðs;xÞmðsÞdBðsÞ

�

Z
B

Mvðs;xÞyðsÞdBðsÞ þ

Z
B

V vðs;xÞuðsÞdBðsÞ; x 2 Oe, ð20Þ

where Oe is the complementary domain. Note that the null-field BIEs are not singular, since x and s never
coincide. When the boundary is discretized into 2N constant elements, the linear algebraic equations of Eqs.
(17)–(20) by moving the field point x close to the boundary B yield:

0 ¼ ½U �fvg þ ½Y�fmg þ ½M�fyg þ ½V �fug, (21)

0 ¼ ½Uy�fvg þ ½Yy�fmg þ ½My�fyg þ ½Vy�fug, (22)

0 ¼ ½Um�fvg þ ½Ym�fmg þ ½Mm�fyg þ ½V m�fug, (23)

0 ¼ ½Uv�fvg þ ½Yv�fmg þ ½Mv�fyg þ ½V v�fug, (24)

where ½U �, ½Y�, ½M�, ½V �, ½Uy�, ½Yy�, ½My�, ½Vy�, ½Um�, ½Ym�, ½Mm�, ½V m�, ½Uv�, ½Yv�, ½Mv� and ½V v� are the 16
influence matrices with the dimension of 2N � 2N, fug, fyg, fmg and fvg are the vectors of boundary data with
the dimension of 2N � 1. For the imaginary-part BEM, the kernel function Uðs; xÞ is the imaginary-part of the
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fundamental solution

Uðs;xÞ ¼ Im½Ucðs;xÞ� ¼
1

8l2
ðJ0ðlrÞ þ

2

p
ðI0ðlrÞ

� �
. (25)

In order to obtain the true and spurious characteristic equations for plate vibration in the imaginary-part
BEM, the degenerate kernel, Fourier series and circulants are adopted in the continuous and discrete systems
of a circular plate. Three cases (clamped, simply-supported and free plates) are demonstrated analytically in
the continuous and the discrete systems, respectively, in the following subsections.

2.1. Continuous system

2.1.1. Case 1. Clamped circular plate

For the clamped circular plate (u ¼ 0 and y ¼ 0) with a radius a, we can obtain the characteristic equation
in the continuous formulation. The moment and shear force, mðsÞ and vðsÞ, are expanded into Fourier series by

mðsÞ ¼
X1
n¼0

ðpc
n cosðnfÞ þ qc

n sinðnfÞÞ; s 2 B, (26)

vðsÞ ¼
X1
n¼0

ðac
n cosðnfÞ þ bc

n sinðnfÞÞ; s 2 B, (27)

where the superscript ‘‘c’’ denotes the clamped case, f is the angle on the circular boundary, ac
n, bc

n, pc
n and qc

n

are the undetermined Fourier coefficients. Substituting Eqs. (26) and (27) into Eqs. (17) and (18), we have

0 ¼ �

Z 2p

0

Uðs;xÞ
X1
n¼0

ðac
n cosðnfÞ þ bc

n sinðnfÞÞ

" #
dBðsÞ

þ

Z 2p

0

Yðs;xÞ
X1
n¼0

ðpc
n cosðnfÞ þ qc

n sinðnfÞÞ

" #
dBðsÞ; x 2 B, ð28Þ

0 ¼ �

Z 2p

0

Uyðs;xÞ
X1
n¼0

ðac
n cosðnfÞ þ bc

n sinðnfÞÞ

" #
dBðsÞ

þ

Z 2p

0

Yyðs;xÞ
X1
n¼0

ðpc
n cosðnfÞ þ qc

n sinðnfÞÞ

" #
dBðsÞ; x 2 B. ð29Þ

The kernel functions, Uðs;xÞ, Yðs;xÞ, Uyðs; xÞ and Yyðs;xÞ, are expanded by using the expansion formulae,

J0ðlrÞ ¼

Ji
0ðlrÞ ¼

P1
m¼�1

JmðlrÞJmðlrÞ cosðmðf� fÞÞ; r4r;

Je
0ðlrÞ ¼

P1
m¼�1

JmðlrÞJmðlrÞ cosðmðf� fÞÞ; r4r;

8>>><
>>>:

(30)

I0ðlrÞ ¼

I i
0ðlrÞ ¼

P1
m¼�1

ð�1ÞmImðlrÞImðlrÞ cosðmðf� fÞÞ; r4r;

Ie
0ðlrÞ ¼

P1
m¼�1

ð�1ÞmImðlrÞImðlrÞ cosðmðf� fÞÞ; r4r;

8>>><
>>>:

(31)

where Jm and Im denote the first kind of the mth-order Bessel and modified Bessel functions. The superscripts
‘‘i’’ and ‘‘e’’ denote the interior point ðr4rÞ and the exterior point ðrorÞ, s ¼ ðr;fÞ and x ¼ ðr;fÞ are the
polar coordinates of s and x, respectively. In this case, r ¼ r ¼ a and dBðsÞ ¼ a df for the circular plate with a
radius a. Similarly, the other kernels can also be expanded into degenerate forms. By using the degenerate
kernels into Eq. (28) and by employing the orthogonality condition of the Fourier series, the Fourier
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coefficients ac
n, bc

n, pc
n and qc

n satisfy

pc
n ¼

1

l
½JnðlaÞJnðlaÞ þ 2

p ð�1Þ
nInðlaÞInðlaÞ�

½JnðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nInðlaÞI 0nðlaÞ�
ac

n; n ¼ 0; 1; 2; . . . , (32)

qc
n ¼

1

l
½JnðlaÞJnðlaÞ þ 2

p ð�1Þ
nInðlaÞInðlaÞ�

½JnðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nInðlaÞI 0nðlaÞ�
bc

n; n ¼ 0; 1; 2; . . . . (33)

Similarly, Eq. (29) yields,

pc
n ¼

1

l
½J 0nðlaÞJnðlaÞ þ 2

p ð�1Þ
nI 0nðlaÞInðlaÞ�

½J 0nðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞI 0nðlaÞ�
ac

n; n ¼ 0; 1; 2; . . . , (34)

qc
n ¼

1

l
½J 0nðlaÞJnðlaÞ þ 2

p ð�1Þ
nI 0nðlaÞInðlaÞ�

½J 0nðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞI 0nðlaÞ�
bc

n; n ¼ 0; 1; 2; . . . . (35)

To obtain the nontrivial data for the generalized coefficients of ac
n, pc

n, bc
n and qc

n, we derive the characteristic
equation by using either Eqs. (32) and (34) or Eqs. (33) and (35)

JnðlaÞJnðlaÞ þ 2
p ð�1Þ

nInðlaÞInðlaÞ

JnðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nInðlaÞI 0nðlaÞ
¼

J 0nðlaÞJnðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞInðlaÞ

J 0nðlaÞJ 0nðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞI 0nðlaÞ
. (36)

After collecting the terms by using the recurrence relations of the Bessel function, Eq. (36) is simplified to

½Inþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞ�fInþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞg ¼ 0. (37)

The former part in Eq. (37) inside the square bracket is the spurious solution while the latter part inside the
curly bracket is found to be the true solution after comparing with the exact solution [20]. In this case, it is
interesting to find that the true and spurious solutions are the same. We can also comment that no spurious
eigenvalue occurs although spurious multiplicity may appear. Eq. (37) is similar to the characteristic equation
JnðlaÞJnðlaÞ ¼ 0 for the membrane [11] when the imaginary-part BEM is employed.
2.1.2. Case 2. Simply-supported circular plate

Following the same procedure of case 1, we have

JnðlaÞJnðlaÞ þ 2
p ð�1Þ

nInðlaÞInðlaÞ

JnðlaÞaJ
nðlaÞ þ 2

p ð�1Þ
nInðlaÞaI

nðlaÞ
¼

J 0nðlaÞJnðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞInðlaÞ

J 0nðlaÞaJ
nðlaÞ þ 2

p ð�1Þ
nI 0nðlaÞaI

nðlaÞ
, (38)

where

aJ
n ðlaÞ ¼ l2J 00nðlaÞ þ n

1

a
lJ 0nðlaÞ �

n

a

� �2
JnðlaÞ

� �
, (39)

aI
nðlaÞ ¼ l2I 00nðlaÞ þ n

1

a
lI 0nðlaÞ �

n

a

� �2
InðlaÞ

� �
. (40)

After collecting the terms by using the recurrence relations of the Bessel function, Eq. (38) is simplified to

½Inþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞ�

fð1� nÞInðlaÞJnþ1ðlaÞ þ Inþ1ðlaÞJnðlaÞ � 2laInðlaÞJnðlaÞg ¼ 0. (41)

The former part in Eq. (41) inside the square bracket is the spurious solution while the latter part inside
the curly bracket is found to be the true solution after comparing with the exact solution [20]. The spurious
solution in Eq. (41) is the same as the former one in Eq. (37) for the clamped case by using the imaginary-
part BEM.
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2.1.3. Case 3. Free circular plate

Following the same procedure of case 1, we have

½JnðlaÞaJ
nðlaÞ þ 2

p ð�1Þ
nInðlaÞaI

nðlaÞ�

½JnðlaÞbJ
nðlaÞ þ 2

p ð�1Þ
nInðlaÞbI

nðlaÞ þ 1�n
a
½JnðlaÞgJ

n ðlaÞ þ 2
p ð�1Þ

nInðlaÞgI
nðlaÞ��

¼
½J 0nðlaÞJnðlaÞ þ 2

p ð�1Þ
nI 0nðlaÞInðlaÞ�

½J 0nðlaÞbJ
nðlaÞ þ 2

p ð�1Þ
nI 0nðlaÞbI

nðlaÞ þ 1�n
a
½J 0nðlaÞgJ

nðlaÞ þ 2
p ð�1Þ

nI 0nðlaÞgI
nðlaÞ��

, ð42Þ

where

bJ
nðlaÞ ¼ l3J 000n ðlaÞ þ n

1

a
l2J 00nðlaÞ �

n

a

� �2
lJ 0nðlaÞ �

1

a2
lJ 0nðlaÞ þ

2n2

a3

� �
JnðlaÞ

� �
, (43)

bI
nðlaÞ ¼ l3I 000n ðlaÞ þ n

1

a
l2I 00nðlaÞ �

n

a

� �2
lI 0nðlaÞ �

1

a2
lI 0nðlaÞ þ

2n2

a3

� �
InðlaÞ

� �
, (44)

gJ
nðlaÞ ¼ �n2 1

a2
JnðlaÞ þ

l
a

J 0nðlaÞ

� �
, (45)

gI
nðlaÞ ¼ �n2 1

a2
InðlaÞ þ

l
a

I 0nðlaÞ

� �
. (46)

After collecting the terms by using the recurrence relations of the Bessel function, Eq. (42) is simplified to

½Inþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞ�flað1� nÞ½�4n2ðn� 1ÞInðlaÞJnðlaÞ � 2l2a2Inþ1ðlaÞJnþ1ðlaÞ�

þ 2nl2a2ð1� nÞð1� nÞðInþ1ðlaÞJnðlaÞ � InðlaÞJnþ1ðlaÞÞ

þ ½n2ð1� nÞ2ðn2 � 1Þ þ l4a4�ðInþ1ðlaÞJnðlaÞ þ InðlaÞJnþ1ðlaÞÞg ¼ 0. ð47Þ

The former part in Eq. (47) inside the square bracket is the spurious solution which also appears in the
clamped and simply-supported cases. It is found that the spurious solutions of Eqs. (37), (41) and (47) are not
different since the same formulation (null-field integral formulation of Eqs. (17) and (18)) is used. This
indicates that spurious solution depends on the formulation instead of the specified boundary condition. The
results of true solution were summaried in Table 1, and the results of spurious solution were rearranged in
Table 2.

2.2. Discrete system

2.2.1. Case 1. Clamped circular plate

For the clamped circular plate (u ¼ 0 and y ¼ 0) with a radius a, Eqs. (21) and (22) can be rewritten as

f0g ¼ ½U �fvg þ ½Y�fmg, (48)

f0g ¼ ½Uy�fvg þ ½Yy�fmg. (49)
Table 1

True solution for a circular plate ða ¼ 1Þ

True eigensolution for circular plate

Clamped circular plate I ‘þ1J‘ þ I ‘J‘þ1 ¼ 0

Simply-supported circular plate ð1� nÞðI ‘J‘þ1 þ I ‘þ1J‘Þ � 2lI ‘J‘ ¼ 0

Free circular plate lð1� nÞ½�4‘2ð‘ � 1ÞI ‘J‘ � 2l2I ‘þ1J‘þ1� þ 2‘l2ð1� nÞð1� ‘ÞðI ‘þ1J‘ � I ‘J‘þ1Þ

þ½‘2ð1� nÞ2ð‘2 � 1Þ þ l4�ðI ‘þ1J‘ þ I ‘J‘þ1Þ ¼ 0

‘ ¼ 0;�1;�2;�3; . . . :
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Table 2

Spurious solution by using the six formulations in the imaginary-part BEM

Spurious eigensolution in the imaginary-part BEM

u; y formulation I ‘þ1J‘ þ I ‘J‘þ1 ¼ 0

u,m formulation ð1� nÞðI ‘J‘þ1 þ I ‘þ1J‘Þ � 2lrI ‘J‘ ¼ 0

u, v formulation ‘2ð1� nÞðI ‘J‘þ1 þ I ‘þ1J‘Þ � 2lr‘I ‘J‘ þ l2r2ðI ‘J‘þ1 � I ‘þ1J‘Þ ¼ 0

y;m formulation ‘2ð1� nÞðI ‘J‘þ1 þ I ‘þ1J‘Þ � 2lr‘I ‘J‘ þ l2r2ðI ‘J‘þ1 � I ‘þ1J‘Þ ¼ 0

y, v formulation 2lrð‘2I ‘J‘ � l2r2I ‘þ1J‘þ1Þ þ 2l2r2‘ðI ‘þ1J‘ � I ‘J‘þ1Þ � ‘
2ð1� nÞ�ðI ‘þ1J‘ þ I ‘J‘þ1Þ ¼ 0

m, v formulation lrð1� nÞ½�4‘2ð‘ � 1ÞI ‘J‘ � 2l2r2I ‘þ1J‘þ1� þ 2‘l2r2ð1� nÞð1� ‘ÞðI ‘þ1J‘ � I ‘J‘þ1Þþ

½‘2ð1� nÞ2ð‘2 � 1Þ þ l4r4�ðI ‘þ1J‘ þ I ‘J‘þ1Þ ¼ 0

‘ ¼ 0;�1;�2;�3; . . . :
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By assembling Eqs. (48) and (49) together, we have

½SMc
�

v

m

� �
¼ f0g, (50)

where the superscript ‘‘c’’ denotes the clamped case and

½SMc
� ¼

U Y

Uy Yy

" #
4N�4N

. (51)

For the existence of nontrivial solution of f v
m
g, the determinant of the matrix versus eigenvalue must be zero,

i.e.,

det½SMc
� ¼ 0. (52)

Since the rotation symmetry is preserved for a circular boundary, the influence matrices for the discrete system
are found to be the circulants. The eigenvalues ðm½U �‘ Þ of the 16 influence matrices ð½U �Þ for the discrete system
can be obtained by using the property of the circulant.

m½U �‘ ¼ �
pa

4l2
J‘ðlaÞJ‘ðlaÞ þ

2

p
ð�1Þ‘I ‘ðlaÞI ‘ðlaÞ

� �
; ‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N. (53)

Similarly, we have

m½Y�‘ ¼
pa

4l
J‘ðlaÞJ 0‘ðlaÞ þ

2

p
ð�1Þ‘I ‘ðlaÞI 0‘ðlaÞ

� �
; ‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N, (54)

k½U �‘ ¼ �
pa

4l
J 0‘ðlaÞJ‘ðlaÞ þ

2

p
ð�1Þ‘I 0‘ðlaÞI ‘ðlaÞ

� �
; ‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N, (55)

k½Y�‘ ¼
pa

4
J 0‘ðlaÞJ 0‘ðlaÞ þ

2

p
ð�1Þ‘I 0‘ðlaÞI 0‘ðlaÞ

� �
; ‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N, (56)

where m½Y�‘ , k½U �‘ and k½Y�‘ are the eigenvalues of ½Y�, ½Uy� and ½Yy� matrices, respectively. Since the four matrices
½U �, ½Y�, ½Uy� and ½Yy� are all symmetric circulants, they can be expressed as

½U � ¼ FSUF�1, (57)

½Y� ¼ FSYF�1, (58)

½Uy� ¼ FSUyF
�1, (59)

½Yy� ¼ FSYyF
�1, (60)
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where

SU ¼ diagðm½U �0 ;m½U �1 ; m½U ��1 ; . . . ;m
½U �
ðN�1Þ;m

½U �
�ðN�1Þ; m

½U �
N Þ, (61)

SY ¼ diagðm½Y�0 ; m½Y�1 ;m½Y��1 ; . . . ;m
½Y�
ðN�1Þ;m

½Y�
�ðN�1Þ;m

½Y�
N Þ, (62)

SUy ¼ diagðk½U �0 ; k½U �1 ;k½U �
�1 ; . . . ; k

½U �
ðN�1Þ; k

½U �
�ðN�1Þ;k

½U �
N Þ, (63)

SYy ¼ diagðk½Y�0 ;k½Y�1 ;k½Y��1 ; . . . ;k
½Y�
ðN�1Þ;k

½Y�
�ðN�1Þ; k

½Y�
N Þ (64)

and

F ¼
1ffiffiffiffiffiffiffi
2N
p

1 1 0 � � � 1 0 1

1 cos
2p
2N

� �
sin

2p
2N

� �
� � � cos

2pðN � 1Þ

2N

� �
sin

2pðN � 1Þ

2N

� �
cos

2pN

2N

� �

1 cos
4p
2N

� �
sin

4p
2N

� �
� � � cos

4pðN � 1Þ

2N

� �
sin

4pðN � 1Þ

2N

� �
cos

4pN

2N

� �

..

. ..
. ..

. . .
. ..

. ..
. ..

.

1 cos
2pð2N � 2Þ

2N

� �
sin

2pð2N � 2Þ

2N

� �
� � � cos

pð4N � 4ÞðN � 1Þ

2N

� �
sin

pð4N � 4ÞðN � 1Þ

2N

� �
cos

pð4N � 4ÞðNÞ

2N

� �

1 cos
2pð2N � 1Þ

2N

� �
sin

2pð2N � 1Þ

2N

� �
� � � cos

pð4N � 2ÞðN � 1Þ

2N

� �
sin

pð4N � 2ÞðN � 1Þ

2N

� �
cos

pð4N � 2ÞðNÞ

2N

� �

2
6666666666666666664

3
7777777777777777775
2N�2N

.

(65)

By employing Eqs. (57)–(60) for Eq. (51), we have

½SMc
� ¼

FSUF�1 FSYF�1

FSUyF
�1 FSYyF

�1

" #
4N�4N

, (66)

Eq. (66) can be reformulated into

½SMc
� ¼

F 0

0 F

� � SU SY

SUy SYy

" #
F�1 0

0 F�1

" #
. (67)

By using the property of the determinant, the determinant of ½SMc
�4N�4N is

det½SMc
� ¼ det

SU SY

SUy SYy

" #
¼

YN
‘¼�ðN�1Þ

ðm½U �‘ k½Y�‘ � m½Y�‘ k½U �‘ Þ, (68)

since F is orthogonal. By employing Eqs. (53)–(56) for Eq. (68), we have

det½SMc
� ¼

YN
‘¼�ðN�1Þ

p2a2

16l2

� J‘ðlaÞJ‘ðlaÞ þ
2

p
ð�1Þ‘I ‘ðlaÞI ‘ðlaÞ

� �
J 0‘ðlaÞJ 0‘ðlaÞ þ

2

p
ð�1Þ‘I 0‘ðlaÞI 0‘ðlaÞ

� ��

� J‘ðlaÞJ 0‘ðlaÞ þ
2

p
ð�1Þ‘I ‘ðlaÞI 0‘ðlaÞ

� �
J 0‘ðlaÞJ‘ðlaÞ þ

2

p
ð�1Þ‘I 0‘ðlaÞI ‘ðlaÞ

� ��
. ð69Þ

By using the recurrence relations of the Bessel function, Eq. (69) is simplified into

det½SMc
� ¼

YN
‘¼�ðN�1Þ

pa2

8l2
½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�

�fI ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞg ¼ 0. ð70Þ
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Zero determinant in Eq. (70) implies that the characteristic equation is

½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�fI ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞg ¼ 0,

‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N. ð71Þ

After comparing with the analytical solution for the clamped circular plate [20], the true solution for the
continuous system is obtained by approaching N in the discrete system to infinity. The result of Eq. (71) in the
discrete system matches well with Eq. (37) in the continuous system.

2.2.2. Case 2. Simply-supported circular plate

For the simply-supported circular plate (u ¼ 0 and m ¼ 0) with a radius a, we have

½SMs
� ¼

U M

Uy My

" #
4N�4N

, (72)

where the superscript ‘‘s’’ denotes the simply-supported case. By using the property of the determinant and the
recurrence relations of the Bessel function, the determinant of ½SMs

�4N�4N is simplified into

det½SMs
� ¼

YN
‘¼�ðN�1Þ

pa

8l2
½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�

�fð1� nÞI ‘ðlaÞJnþ1ðlaÞ þ Inþ1ðlaÞJ‘ðlaÞ � 2laI ‘ðlaÞJ‘ðlaÞg ¼ 0. ð73Þ

Zero determinant in Eq. (73) implies that the characteristic equation is

½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�fð1� nÞI ‘ðlaÞJnþ1ðlaÞ þ Inþ1ðlaÞJ‘ðlaÞ � 2laI ‘ðlaÞJ‘ðlaÞg ¼ 0,

‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N. ð74Þ

After comparing with the analytical solution for the simply-supported circular plate [20], the true solution for
the continuous system is obtained by approaching N in the discrete system to infinity. The result of Eq. (74) in
the discrete system matches well with Eq. (41) in the continuous system.

2.2.3. Case 3. Free circular plate

For the free circular plate (m ¼ 0 and v ¼ 0) with a radius a, we have

½SMf
� ¼

M V

My V y

" #
4N�4N

, (75)

where the superscript ‘‘f ’’ denotes the free case. By using the property of the determinant and the recurrence
relations of the Bessel function, the determinant of ½SMf

�4N�4N is simplified into

det½SMf
� ¼

YN
‘¼�ðN�1Þ

pa

8l2
½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�

�flað1� nÞ½�4‘2ð‘ � 1Þ�I ‘ðlaÞJ‘ðlaÞ � 2l2a2I ‘þ1ðlaÞJ‘þ1ðlaÞ�

þ 2‘l2a2ð1� nÞð1� ‘ÞðI ‘þ1ðlaÞJ‘ðlaÞ � I ‘ðlaÞJ‘þ1ðlaÞÞ

þ ½‘2ð1� nÞ2ð‘2 � 1Þ þ l4a4�ðI ‘þ1ðlaÞJ‘ðlaÞ þ I ‘ðlaÞJ‘þ1ðlaÞÞg ¼ 0. ð76Þ

Zero determinant in Eq. (76) implies that the characteristic equation is

½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ�flað1� nÞ½�4‘2ð‘ � 1ÞI ‘ðlaÞJ‘ðlaÞ � 2l2a2I ‘þ1ðlaÞJ‘þ1ðlaÞ�

þ 2‘l2a2ð1� nÞð1� ‘ÞðI ‘þ1ðlaÞJ‘ðlaÞ � I ‘ðlaÞJ‘þ1ðlaÞÞ

þ ½‘2ð1� nÞ2ð‘2 � 1Þ þ l4a4�ðI ‘þ1ðlaÞJ‘ðlaÞ þ I ‘ðlaÞJ‘þ1ðlaÞÞg ¼ 0,

‘ ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N. ð77Þ
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After comparing with the analytical solution for the free circular plate [20], the true solution for the
continuous system is obtained by approaching N in the discrete system to infinity. The result of Eq. (77) in the
discrete system matches well with Eq. (47) in the continuous system. After comparing Eq. (71) with Eqs. (74)
and (77), the same spurious solution of characteristic equation ð½I ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞ� ¼ 0Þ is
simultaneously embedded in the u, y formulation no matter what the boundary condition is.

Since any two equations in the plate formulation (Eqs. (21)–(24)) are chosen, 6ðC4
2Þ options of the

formulation can be considered. If we choose different combinations of the formulae for any one of the
clamped, simply-supported or free circular plate cases, we obtain the same true solution but different spurious
solutions. At the same time, the clamped, simply-supported and free circular plates result in the same spurious
solution, once the same formulation is chosen. The occurrence of spurious solution only depends on the
formulation instead of the specified boundary condition. True solution depends on the specified boundary
condition instead of the formulation. All the results are summarized in Tables 1 and 2. After comparing Table
1 with Table 2, it is found that spurious and true solutions are the same not only when using the essential
boundary integral equations (u� y formulation) for the essential boundary conditions (clamped) but also the
natural boundary integral equations (m� v formulation) for the natural boundary conditions (free). It is
similar to membrane problem [11].

To the authors’ best knowledge, the occurrence of the spurious mode and rigid body mode are both
attributed to the rank-deficiency of the influence matrix. The zero-energy modes produce numerical instability
in FEM for the reduced-order Gaussian quadrature. In the FEM, the zero-energy mode can separate into two
parts: one is the rigid body mode (physically realizable) and the other is the hour-glass mode (mathematically
realizable). Further research have been done and they were addressed in Ref. [21].
3. Treatment of the spurious eigenvalues for simply-connected characteristic problems

3.1. SVD updating technique

3.1.1. Continuous system

A conventional approach to detect the nonunique solution is the criterion of satisfying all Eqs. (21)–(24) at
the same time in the imaginary-part BEM. For the clamped plate (u ¼ 0 and y ¼ 0), the moment and shear
force (mðsÞ and vðsÞ), are expanded into Fourier series as shown in Eqs. (26) and (27). By substituting the
degenerate kernels into Eqs. (17)–(18) and by employing the orthogonality condition of the Fourier series, the
Fourier coefficients ac

n, bc
n, pc

n and qc
n satisfy Eqs. (32)–(35). If we employ Eq. (19) to solve the same

characteristic problem, we obtain the Fourier coefficients ac
n, bc

n, pc
n and qc

n satisfying

pc
n ¼
½aJ

n ðlaÞJnðlaÞ þ 2
p a

I
nðlaÞInðlaÞ�

½aJ
n ðlaÞJ 0nðlaÞ þ 2

p a
I
nðlaÞI 0nðlaÞ�

ac
n; n ¼ 0; 1; 2; . . . , (78)

qc
n ¼
½aJ

n ðlaÞJnðlaÞ þ 2
p a

I
nðlaÞInðlaÞ�

½aJ
n ðlaÞJ 0nðlaÞ þ 2

p a
I
nðlaÞI 0nðlaÞ�

bc
n; n ¼ 0; 1; 2; . . . . (79)

Similarly, Eq. (20) yields,

pc
n ¼
½bJ

nðlaÞJnðlaÞ þ 2
p b

I
nðlaÞðlaÞInðlaÞ þ 1�n

a
½gJ

nðlaÞJnðlaÞ þ 2
p g

I
nðlaÞInðlaÞ��

½bJ
nðlaÞJ 0nðlaÞ þ 2

p b
I
nðlaÞðlaÞI 0nðlaÞ þ 1�n

a
½gJ

nðlaÞJ 0nðlaÞ þ 2
p g

I
nðlaÞI 0nðlaÞ��

ac
n; n ¼ 0; 1; 2; . . . , (80)

qc
n ¼
½bJ

nðlaÞJnðlaÞ þ 2
p b

I
nðlaÞðlaÞInðlaÞ þ 1�n

a
½gJ

nðlaÞJnðlaÞ þ 2
p g

I
nðlaÞInðlaÞ��

½bJ
nðlaÞJ 0nðlaÞ þ 2

p b
I
nðlaÞðlaÞI 0nðlaÞ þ 1�n

a
½gJ

nðlaÞJ 0nðlaÞ þ 2
p g

I
nðlaÞI 0nðlaÞ��

bc
n; n ¼ 0; 1; 2; . . . . (81)

For the true solution of characteristic equation

fInþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞg ¼ 0; n ¼ 0;�1;�2; . . . ;�ðN � 1Þ;N, (82)
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Eqs. (32), (34), (78) and (80) are simplified to

pc
n ¼

IðlaÞ

lI 0nðlaÞ
ac

n; n ¼ 0; 1; 2; . . . . (83)

In this case, we obtain the nontrivial data of the true boundary mode in the column vector form by employing
Eq. (83) as shown below:

ac
0

pc
0

ac
1

bc
1

pc
1

qc
1

..

.

ac
n

bc
n

pc
n

qc
n

..

.

ac
2N

bc
2N

pc
2N

qc
2N

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

0

0

0

0

0

0

..

.

1

0

InðlaÞÞ=lI 0nðlaÞ

0

..

.

0

0

0

0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ac
n þ

0

0

0

0

0

0

..

.

0

1

0

InðlaÞÞ=lI 0nðlaÞ

..

.

0

0

0

0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

bc
n, (84)

where ac
n and bc

n are arbitrary. The column vector of the true boundary modes is the same by using any one of
Eqs. (32), (34), (78) and (80). In case of the spurious eigenvalue, Eqs. (32), (34), (78) and (80) cannot obtain the
common term. After collecting any two terms of Eqs. (32), (34), (78) and (80) by using the recurrence relations
of the Bessel function, it is found that all the results can be simplified to six different spurious solutions as
shown in Table 2. The same true solution is commonly imbedded in the six imaginary-part formulations. A
possible way to obtain the nontrivial data for the generalized coefficients is only the common one (true
solution in Eq. (82)) to be satisfied.

This indicates that only the true solution of the clamped circular plate is sorted out since it is simultaneously
embedded in the six imaginary-part formulations. The result matches well with Eqs. (37) and (71) in the
continuous and discrete systems, respectively. Since we solve the same problem by using the imaginary-part
BEM, only the true solution of the clamped circular plate is sorted out for the same reason that the true
solution is simultaneously embedded in the six imaginary-part formulations. This is the mathematical meaning
of the SVD technique of updating term in the continuous system. We will apply the SVD updating technique
in the discrete system.

3.1.2. Discrete system

In the discrete system, the approach to detect the spurious characteristic solution is the criterion of
satisfying all Eqs. (21)–(24) at the same time in the imaginary-part BEM. For the clamped plate (u ¼ 0 and
y ¼ 0), Eqs. (21)–(22) reduce to

½SMc
1�

v

m

� �
¼ 0, (85)
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where

½SMc
1� ¼

U Y

Uy Yy

" #
. (86)

Similarly, Eqs. (23) and (24) yield

½SMc
2�

v

m

� �
¼ 0, (87)

where

½SMc
2� ¼

Um Ym

Uv Yv

" #
. (88)

Since the imaginary-part BEM misses the real-part information, we reconstruct the independent equation by
differentiation. To obtain an overdetermined system, we can combine Eqs. (85) and (87) by using the SVD
technique of updating term as shown below:

½C�
v

m

� �
¼ 0, (89)

where

½C� ¼
SMc

1

SMc
2

" #
8N�4N

. (90)

Since the characteristic equation is nontrivial, the rank of the matrix ½C� must be smaller than 4N. The 4N

singular values for the matrix ½C� must have at least one zero value. The explicit form for the matrix ½C� is
decomposed into

½C� ¼

F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F

2
6664

3
7775
8N�8N

SU SY

SUy SYy

SUm
SYm

SUv
SYv

2
66664

3
77775
8N�4N

FT 0

0 FT

" #
4N�4N

. (91)

Based on the equivalence between the SVD technique and the least-squares method in mathematical essence
[22], the least squares form leads to

½C�T½C� ¼
F 0

0 F

� �
4N�4N

½D�4N�4N

F 0

0 F

� �T
4N�4N

, (92)

where

½D� ¼
SU SUy SUm

SUv

SY SYy SYm
SYv

" #
4N�8N

SU SY

SUy SYy

SUm
SYm

SUv
SYv

2
66664

3
77775
8N�4N

. (93)

If the determinant of the matrix ½C�T½C� is zero, we can obtain the nontrivial solution. Since F is orthogonal,
the determinant of the matrix ½C�T½C� is equal to the determinant of the matrix ½D�. By calculating the
determinant of the matrix ½D�, we have

det½D� ¼
YN

‘¼�ðN�1Þ

½ðm½U �‘ k½Y�‘ � m½Y�‘ k½U �‘ Þ
2
þ ðm½U �‘ z½Y�‘ � m½Y�‘ z½U �‘ Þ

2
þ ðm½U �‘ d½Y�‘ � m½Y�‘ d½U �‘ Þ

2

þ ðk½U �‘ z½Y�‘ � k½Y�‘ z½U �‘ Þ
2
þ ðk½U �‘ d½Y�‘ � k½Y�‘ d½U �‘ Þ

2
þ ðz½U �‘ d½Y�‘ � z½Y�‘ d½U �‘ Þ

2
�, ð94Þ



ARTICLE IN PRESS
J.T. Chen et al. / Journal of Sound and Vibration 293 (2006) 380–408 393
where z½U �‘ , z½Y�‘ , d½Y�‘ and d½U �‘ are the eigenvalues of the matrices ½Um�, ½Ym�, ½Uv� and ½Yv�, respectively. The

only possibility for the zero determinant of the matrix ½D� occurs when the six terms, ðm½U �‘ k½Y�‘ � m½Y�‘ k½U �‘ Þ,

ðm½U �‘ z½Y�‘ � m½Y�‘ z½U �‘ Þ, ðm
½U �
‘ d½Y�‘ � m½Y�‘ d½U �‘ Þ, ðk

½U �
‘ z½Y�‘ � k½Y�‘ z½U �‘ Þ, ðk

½U �
‘ d½Y�‘ � k½Y�‘ d½U �‘ Þ and ðz

½U �
‘ d½Y�‘ � z½Y�‘ d½U �‘ Þ are all

zeros simultaneously for the same ‘. Here we find that the six terms exactly result in the six different spurious
solutions as shown in Table 2, and the same true solution is commonly imbedded in the six imaginary-part
formulations. A possible way for the zero determinant of the matrix ½D� is the common term (true solution in
Eq. (82)) to be satisfied.

This indicates that only the true solution of the clamped circular plate is sorted out in the SVD updating matrix
since it is simultaneously embedded in the six imaginary-part formulations (see Eq. (94)). The result matches well
with Eqs. (37) and (71) in the continuous and discrete systems, respectively. Since we solve the same problem by
using the imaginary-part BEM, only the true solution of the clamped circular plate is sorted out for the same
reason that the true solution is simultaneously embedded in the six imaginary-part formulations.

3.2. Burton and Miller method and the complex-valued BEM

In the exterior acoustics of Helmholtz equation by using the dual BEM, Burton and Miller [23] utilized the
product of hypersingular equation with an imaginary constant and added the singular equation to deal with
the fictitious-frequency problem which results in a non-uniqueness solution. We will extend this concept to
suppress the appearance of spurious solution in the imaginary-part BEM.

3.2.1. Continuous system

For the clamped circular plate with a radius a, combination of Eqs. (17) and (19) with an imaginary number
by using the imaginary-part BEM yields

0 ¼ �

Z
B

½Uðs; xÞ þ iUmðs;xÞ�vðsÞdBðsÞ þ

Z
B

½Yðs;xÞ þ iYmðs;xÞ�mðsÞdBðsÞ. (95)

Similarly, Eqs. (18) and (20) yield,

0 ¼ �

Z
B

½Uyðs; xÞ þ iUvðs;xÞ�vðsÞdBðsÞ þ

Z
B

½Yyðs; xÞ þ iYvðs;xÞ�mðsÞdBðsÞ. (96)

The moment and shear force, mðsÞ and vðsÞ, are expanded into Fourier series as shown in Eqs. (26) and (27). By
using the degenerate kernels into Eq. (95) and by employing the orthogonality condition of the Fourier series,
the Fourier coefficients ac

n, bc
n, pc

n and qc
n satisfy

pc
n ¼
½JnðlaÞJnðlaÞ þ 2

p InðlaÞInðlaÞ� þ i½aJ
nðlaÞJnðlaÞ þ 2

p a
I
nðlaÞInðlaÞ�

½JnðlaÞJ 0nðlaÞ þ 2
p InðlaÞI 0nðlaÞ� þ i½aJ

nðlaÞJ 0nðlaÞ þ 2
p a

I
nðlaÞI 0nðlaÞ�

ac
n; n ¼ 0; 1; 2; . . . , (97)

qc
n ¼
½JnðlaÞJnðlaÞ þ 2

p InðlaÞInðlaÞ� þ i½aJ
nðlaÞJnðlaÞ þ 2

p a
I
nðlaÞInðlaÞ�

½JnðlaÞJ 0nðlaÞ þ 2
p InðlaÞI 0nðlaÞ� þ i½aJ

nðlaÞJ 0nðlaÞ þ 2
p a

I
nðlaÞI 0nðlaÞ�

bc
n; n ¼ 0; 1; 2; . . . . (98)

Similarly, Eq. (96) yields,

pc
n ¼

l½J 0nðlaÞJnðlaÞ þ 2
p I 0nðlaÞInðlaÞ�

l½J 0nðlaÞJ 0nðlaÞ þ 2
p I 0nðlaÞI 0nðlaÞ�

þi½bJ
n ðlaÞJnðlaÞ þ 2

p b
I
nðlaÞInðlaÞ þ 1�n

a
½gY

n ðlaÞJnðlaÞ þ 2
p g

K
n ðlaÞðlaÞInðlaÞ��

þi½bJ
nðlaÞJ 0nðlaÞ þ 2

p b
I
nðlaÞI 0nðlaÞ þ 1�n

a
½gY

n ðlaÞJ 0nðlaÞ þ 2
p g

K
n ðlaÞI 0nðlaÞ��

ac
n; n ¼ 0; 1; 2; . . . , ð99Þ

qc
n ¼

l½J 0nðlaÞJnðlaÞ þ 2
p I 0nðlaÞInðlaÞ�

l½J 0nðlaÞJ 0nðlaÞ þ 2
p I 0nðlaÞI 0nðlaÞ�

þi½bJ
n ðlaÞJnðlaÞ þ 2

p b
I
nðlaÞInðlaÞ þ 1�n

a
½gY

n ðlaÞJnðlaÞ þ 2
p g

K
n ðlaÞðlaÞInðlaÞ��

þi½bJ
nðlaÞJ 0nðlaÞ þ 2

p b
I
nðlaÞI 0nðlaÞ þ 1�n

a
½gY

n ðlaÞJ 0nðlaÞ þ 2
p g

K
n ðlaÞI 0nðlaÞ��

bc
n; n ¼ 0; 1; 2; . . . . ð100Þ
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To obtain the nontrivial data for the generalized coefficients of ac
n, pc

n, bc
n and qc

n, we derive the characteristic
equation by using either Eqs. (97) and (99) or Eqs. (98) and (100)

½JnðlaÞJnðlaÞ þ 2
p InðlaÞInðlaÞ� þ i½aJ

nðlaÞJnðlaÞ þ 2
p a

I
nðlaÞInðlaÞ�

½JnðlaÞJ 0nðlaÞ þ 2
p InðlaÞI 0nðlaÞ� þ i½aJ

nðlaÞJ 0nðlaÞ þ 2
p a

I
nðlaÞI 0nðlaÞ�

¼
l½J 0nðlaÞJnðlaÞ þ 2

p I 0nðlaÞInðlaÞ�

l½J 0nðlaÞJ 0nðlaÞ þ 2
p I 0nðlaÞI 0nðlaÞ�

þi½bJ
n ðlaÞJnðlaÞ þ 2

p b
I
nðlaÞInðlaÞ þ 1�n

a
½gJ

nðlaÞJnðlaÞ þ 2
p g

I
nðlaÞðlaÞInðlaÞ��

þi½bJ
nðlaÞJ 0nðlaÞ þ 2

p b
I
nðlaÞI 0nðlaÞ þ 1�n

a
½gJ

nðlaÞJ 0nðlaÞ þ 2
p g

I
nðlaÞI 0nðlaÞ��

. ð101Þ

After collecting the terms by using the recurrence relations of the Bessel function, Eq. (101) is simplified to

½AðlÞ þ iBðlÞ�fInþ1ðlaÞJnðlaÞ þ Jnþ1ðlaÞInðlaÞg ¼ 0. (102)

Since the term ½AðlÞ þ iBðlÞ� is never zero for any l, we can obtain the true eigenvalues by using the imaginary-
part BEM in conjunction with the Burton and Miller concept. Nevertheless, the method fails if we combine the
u, y and m, v formulations or u, v and y, m formulations. The reason is that the u, v and y, m formulation have
the same spurious solution. It occurs that AðlÞ (BðlÞ) may be always zero for any l, this results in the spurious
eigenvalue since the other coefficient BðlÞ (AðlÞ) may be zero. Only the combination of u, m and y, v

imaginary-part formulation yields the true eigenvalues. All the explicit forms of the ½AðlÞ þ iBðlÞ� are shown in
Table 3 by using the imaginary-part BEM.

Since the imaginary-part BEM misses the real-part information, we can reconstruct the independent
equation by adding the other imaginary-part BEM multiplied by an imaginary unit. By employing the Burton
and Miller concept to combine the real and imaginary-part for the same formulation (e.g. u, y formulae), the
complex-valued BEM can be treated as a special case of Burton and Miller method. This indicates that Burton
and Miller method and the complex-valued BEM are mathematical equivalent if we choose the same
formulation (e.g. u, y formulae). To extract the true solution, we construct the imaginary-part formulation
(u, y formulae) and combine with m, v formulae by multiplying an imaginary unit.

3.2.2. Discrete system

By combining Eqs. (85) and (87) with an imaginary number in the imaginary-part BEM, we have

½½SMc
1� þ i½SMc

2��
v

m

� �
¼ 0. (103)

The determinant of the ½SMc
1� þ i½SMc

2� is obtained by using the circulant as

det½½SMc
1� þ i½SMc

2�� ¼
YN

‘¼�ðN�1Þ

½AðlÞ þ iBðlÞ�fI ‘þ1ðlaÞJ‘ðlaÞ þ J‘þ1ðlaÞI ‘ðlaÞg. (104)

The comment in the continuous system for Eq. (102) can be extended to the discrete system.

4. Numerical results and discussions

4.1. Circular plate (clamped (c), simply-supported (s) and free (F) boundary conditions)

A circular plate with a radius of 1m ða ¼ 1mÞ and the Poisson ratio n ¼ 0:33 are considered. The boundary
is uniformly discretized into 10 constant elements. Since any two equations in the plate formulation
(Eqs. (21)–(24)) are chosen, 6ðC4

2Þ options of the formulation can be considered. By using the imaginary-part
BEM, the numerical results are shown below.

4.1.1. True and spurious eigenvalues in the imaginary-part BEM

Based on the six imaginary-part formulations, the determinant of [SM] versus frequency parameter l for the
clamped, simply-supported and free circular plates are shown in Figs. 2–4, respectively. In each figure, we find
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Fig. 2. The absolute value of determinant for ½SMc
� versus frequency parameter l for the clamped circular plate using the six imaginary-

part formulations.
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Fig. 3. The absolute value of determinant for ½SMs
� versus frequency parameter l for the simply-supported circular plate using the six

imaginary-part formulations.
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Fig. 4. The absolute value of determinant for ½SMf
� versus frequency parameter l for the free circular plate using the six imaginary-part

formulations.
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Fig. 5. The absolute value of determinant for ½SM� versus frequency parameter l using the imaginary-part formulation (u; y or u;m
formulation) to solve plates with different boundary conditions.
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Fig. 6. The absolute value of determinant for the matrix ½C�T½C� versus frequency parameter l for the clamped, simply-supported and free

circular plates by using the imaginary-part formulations with the SVD technique of updating term.
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Fig. 7. The absolute value of determinant for the ½SMc
� versus frequency parameter l for the clamped circular plate using the six

imaginary-part formulations in conjunction with the Burton and Miller concept.
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Fig. 8. The absolute value of determinant for the ½SMs
� versus frequency parameter l for the simply-supported circular plate using the six

imaginary-part formulations in conjunction with the Burton and Miller concept.
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Fig. 9. The absolute value of determinant for the ½SMf
� versus frequency parameter l for the free circular plate using the six imaginary-

part formulations in conjunction with the Burton and Miller concept.
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that the true eigenvalues depend on the specified boundary condition (C, S and F) instead of the
six formulations (a, b, c, d, e and f). The spurious eigenvalues are embedded in each formulation as shown in
Figs. 2–4, which satisfy the spurious characteristic equations in Table 2. In order to distinguish the spurious
eigenvalues, Figs. 5(a)–(f) show the determinant of ½SM� versus l using the formulation (e.g., u, y and u, m

formulation) to solve the circular plates subject to different boundary conditions. It is found that any one of
the clamped, simply-supported and free cases results in the same spurious eigenvalues, once we use the
formulation (a, b and c—u; y formulation; d, e and f—u;m formulation). The numerical results reconfirm that
the occurrence of spurious eigenvalues only depends on the formulation instead of the specified boundary
condition. All the spurious characteristic equations in the imaginary-part BEM are summarized in Table 2.
The numerical results of the true eigenvalues agree well with the data in the Leissa book [20].

4.1.2. Treatment by using the SVD updating technique

Figs. 6(a)–(f) show the determinant of the ½C�T½C� versus l for the clamped, simply-supported and free
circular plates using the six imaginary-part formulations in conjunction with the SVD technique of updating
term. Only the true eigenvalues are obtained without contamination of the spurious eigenvalues. Good
agreement is made.

4.1.3. Treatment by using the Burton and Miller method and the complex-valued BEM

Figs. 7–9 show the determinant of the ½SM� versus l for the clamped, simply-supported and free circular
plates using the six imaginary-part formulations in conjunction with the Burton and Miller concept. The
failure cases are shown in the (a), (c), (d) and (f) cases as predicted in Table 3. The spurious characteristic
equations of u, y and m, v formulations are imbedded in the term AðlÞ by using the combination of u, y and m,
v formulation, and the spurious characteristic equation of m, v formulations is the same with the true
characteristic equation of the free circular plate. The true and spurious eigenvalues are very close in the range
ð0olo8Þ by using u, y and m, v formulations in conjunction with the Burton and Miller concept. Only the
combination of u, m and y, v formulations can obtain the true eigenvalues in Figs. 7(b), 7(e), 8(b), 8(e), 9(b)
and 9(e) as predicted in Table 3, since AðlÞ and BðlÞ cannot be zero at the same time. For the case by using the
u, y formulations in conjunction the m, v formulations after multiplying an imaginary number for solving the
circular plates subject to different boundary conditions (Figs. 6(a), 7(a) and 8(a)), the spurious eigenvalues
occur since AðlÞ may be zero for the spurious eigenvalues and BðlÞ is always zero in Table 3.

For the clamped, simply-supported and free circular cases, all the numerical results of the eigenvalues agree
well with the data in Ref. [20] by using the SVD technique of updating term and the Burton and Miller method
(u, m and y, v formulations). All the true eigenvalues are shown in Tables 4–6 for clamped, simply-supported
and free plates, respectively.

4.2. Rectangular plate subject to clamped boundary condition

A rectangular plate with length ða ¼ 1:2mÞ and width ðb ¼ 0:9mÞ for the clamped boundary condition is
considered. According to the imaginary-part BEM implementation, the boundary is discretized into 16
Table 4

True eigenvalues ðlÞ for the clamped circular plate ða ¼ 1Þ

m l for values of n

0 1 2 3 4 5

0 3.19 4.61 5.90 7.14 8.34 9.52

1 6.30 7.80 9.19 10.53 11.83 13.10

2 9.44 10.95 12.40 13.79 15.15 16.47

3 12.57 14.10 15.58 17.00 18.39 19.75

4 15.71 17.25 18.74 20.19 21.60 22.99

Here n refers to the number of nodal diameters and m is the number of nodal circles, not including the boundary circle.
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Table 5

True eigenvalues ðlÞ for the simply-supported circular plate (a ¼ 1, n ¼ 0:33)

m l for values of n

0 1 2 3 4 5

0 2.23 3.73 5.06 6.32 7.54 8.73

1 5.45 6.96 8.37 9.72 11.03 12.31

2 8.61 10.14 11.59 12.98 14.34 15.67

3 11.76 13.29 14.77 16.20 17.59 18.96

4 14.90 16.45 17.94 19.39 20.81 22.20

Here n refers to the number of nodal diameters and m is the number of nodal circles, not including the boundary circle.

Table 6

True eigenvalues ðlÞ for the free circular plate (a ¼ 1, n ¼ 0:33)

m l for values of n

0 1 2 3 4 5

0 2.29 3.50 4.64 5.75

1 3.012 4.53 5.93 7.27 8.56 9.82

2 6.20 7.73 9.18 10.57 11.93 13.25

3 9.37 10.91 12.38 13.80 15.19 16.55

4 12.52 14.06 15.55 17.00 18.42 19.81

Here n refers to the number of nodal diameters and m is the number of nodal circles, not including the boundary circle.

Fig. 10. The absolute value of determinant versus frequency parameter l for the clamped rectangular plate using imaginary-part

formulation.
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constant elements. Although 6ðC4
2Þ options of the formulation can be considered, we used the u� y

formulation for illustration. Fig. 10 shows the true and spurious eigenvalues of the rectangular plate subject to
the clamped boundary condition. After comparing with the results using different approaches [24,25],
agreement is made as shown in Table 7. The conclusions are the same as the circular case that spurious
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Table 7

The former six eigenvalues for the clamped rectangular plate using different approaches

l1 l2 l3 l4 l5 l6

Dickinson [22] 5.964 7.730 9.151 9.975 10.30 11.99

ANSYS (441 nodes) 5.946 7.701 9.114 9.938 10.24 11.91

ANSYS (961 nodes) 5.950 7.706 9.123 9.948 10.26 11.94

Kang and Lee [23] 5.952 7.703 9.131 9.955 10.27 11.95

Present method (16 elements) 5.950 7.550 9.095 9.900 10.380 11.345

Fig. 11. The absolute value of determinant versus frequency parameter l for the clamped elliptical plate using imaginary-part formulation.

Table 8

The former two eigenvalues for the clamped elliptical plate using different approaches

l1 l2

Blevins [24] 2.751 3.706

Present method (14 elements) 2.805 3.620

J.T. Chen et al. / Journal of Sound and Vibration 293 (2006) 380–408406
eigenvalues happen to be the true eigenvalues for the clamped boundary condition if u� y imaginary-part
BEM is adopted.

4.3. Elliptical plate subject to clamped boundary condition

An elliptical plate with a semi-major axis ða ¼ 1:5mÞ and a semi-minor axis ðb ¼ 1:0mÞ for the clamped
boundary condition is considered. According to the imaginary-part BEM implementation, the boundary is
discretized into 14 constant elements. Although 6ðC4

2Þ options of the formulation can be considered, we used
the u� y formulation. Fig. 11 shows the true and spurious eigenvalues of the elliptical plate subject to the
clamped boundary condition. After comparing with the former two eigenvalues in Ref. [26], the results are
acceptable as shown in Table 8.
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5. Concluding remarks

The imaginary-part BEM formulations have been derived for the free vibration of plates. For a circular
plate, the true and spurious solutions were analytically derived by using the degenerate kernel, Fourier series
and circulants in the continuous and discrete systems. The eigenvalues were determined numerically for
noncircular cases. Since any two equations in the plate formulation (four equations) can be chosen, C4

2 (6)
options were considered. The occurrence of spurious solution only depends on the formulation instead of the
specified boundary condition, while the true solution is independent of the formulation and is relevant to the
specified boundary condition. Three cases were demonstrated analytically and numerically to see the validity
of the present method. Two alternatives (SVD updating technique and the Burton and Miller method) were
adopted to suppress the occurrence of the spurious eigenvalues in the imaginary-part BEM. The SVD
technique of updating term and the Burton and Miller method (u, m and y, v formulations) can obtain the true
eigenvalues and the results agree well with the Leissa’s data [20]. Although the circular case lacks generality, it
leads significant insight into the occurring mechanism of true and spurious characteristic equation. Here, the
proof is only limited to the circular case, it is a great help to the researchers who may require analytical
explanation to understand why the spurious characteristic equation occurs. The same algorithm in the discrete
system can be applied to solve arbitrarily-shaped plate numerically without any difficulty. Nevertheless,
mathematical derivation in the continuous and discrete systems cannot be done analytically. To demonstrate
the validity of the present formulation for noncircular cases, rectangular and elliptical plates were verified by
developing a general-purpose program.
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